
Extended Abstract: F# OpenCL Type Provider∗

Kirill Smirenko
St.Petersburg State University

St.Petersburg, Russia
k.smirenko@gmail.com

Semyon Grigorev
Associate Professor

St.Petersburg State University
St.Petersburg, Russia

semen.grigorev@jetbrains.com

Abstract
The popularity of GPGPU usage in applied software is grow-
ing but GPGPU utilization in high-level programming lan-
guages is still challenging. We present the OpenCL type
provider: a way to use existing OpenCL C source code in F#
in a strongly typed way.

CCS Concepts • Software and its engineering→ Func-
tional languages; Parallel programming languages;

Keywords Type Providers,Metaprogramming, Generic Pro-
gramming, GPGPU, OpenCL
ACM Reference Format:
Kirill Smirenko and Semyon Grigorev. 2018. Extended Abstract: F#
OpenCL Type Provider. In Proceedings of The workshop on Type-
Driven Development (TyDe’18). ACM, New York, NY, USA, 3 pages.
https://doi.org/

1 Introduction
General Purpose Graphical Processor Units, or GPGPUs, are
commonly used for fast computations. Theirmulti-core archi-
tecture benefits high-load computations in applied science,
computer vision, bioinformatics and other areas [7, 8].

Several frameworks for GPGPU programming are known.
Themost popular one is CUDA, a platform for parallel GPGPU
computations developed by Nvidia in 2007 [13]. Another im-
portant project is Open Computing Language (OpenCL), an
open standard for cross-platform parallel computing on dif-
ferent platforms, including GPGPU [10]. CUDA and OpenCL
functions executed on a GPGPU device are called kernels.

The technologies mentioned provide special programming
languages: CUDA C/C++, OpenCL C/C++. However, using
higher-level languages, such as C# or F#, can be more con-
venient for GPGPU development, because they are used
more often for general software development, and they are
strongly and statically typed, which, with the help of inte-
grated development environments (IDEs), facilitates develop-
ment and improves the reliability of software. In this paper,
in context of GPGPU development, we are going to call pro-
gramming in special CUDA/OpenCL languages lower-level
development, and coding in C#/F# higher-level development.

∗The research was supported by a grant from JetBrains Research.

TyDe’18, September 27, 2018, St. Louis, Missouri, United States
2018.

There are several instruments for higher-level GPGPU
development. AleaGPU [14] is a commercial product that al-
lows using C# and F# for CUDA programming, and calling a
limited number of included lower-level CUDA libraries. The
work [3] presents FSCL, a limited subset of F# to OpenCL
compiler, which allows developing OpenCL kernels within
the .NET environment. Brahma.FSharp [1] is another F#
to OpenCL compiler, but it differs from FSCL in that it fo-
cuses on translating F# quotations, not regular code. F# quo-
tations are specific expressions that are compiled not in a
regular way, but into objects that represent F# expressions,
and can be evaluated later with F# language tools. Also,
Brahma.FSharp is under active development, while FSCL has
not been updated since January 2016.

There are also tools for managing GPGPU code launches
from .NET. As mentioned earlier, Alea GPU allows reusing
some CUDA libraries. CUSP [5] is a C++ library that en-
hances CUDA development with sparse linear algebra and
graph computations. ManagedCUDA [11] library allows to
run arbitrary pre-compiled CUDA kernels from C#, however
the calls are untyped, which doesn’t satisfy the need for a
completely type-safe environment.

To our knowledge, neither of the existing solutions allows
both programming for GPGPU in higher-level programming
languages and calling arbitrary OpenCL C code in a strongly
typed way. In our work we are trying to solve this problem by
augmenting Brahma.FSharp project with a new component
that loads OpenCL C source files with a mechanism called
type provider.

2 F# type providers
A type provider [15] (TP) is a component of F# programming
language that provides types, properties, and methods dy-
namically [12]. When imported as a DLL, a type provider
adds the generated types to the client code’s environment at
compile-time. Type providers can have static parameters and
thus receive configuration, data source etc. as arguments.
Therefore, type providers allow the user to interact with data
from dynamic sources (such as a file) in a statically typed
way. In short, type providers are a form of compile-time
metaprogramming.
The most popular usage of F# type providers is for inte-

gration with dynamic data sources, such as SQL, CSV, JSON,
in a strongly typed way [6]. One relevant example is R Type
Provider [2]. It enables interoperability between F# and R

https://doi.org/

TyDe’18, September 27, 2018, St. Louis, Missouri, United States Kirill Smirenko and Semyon Grigorev

by discovering installed R packages and making them avail-
able as .NET namespaces underneath the parent namespace
RProvider. Another example is SQL Type Provider [4] that
connects the F# environment in IDE to database sources and
allows to explore them in a type-safe manner.

As an alternative to type providers, a common approach to
loading external resources in a typed way is code generation.
However, type providers ensure better integration with user
context because they work at runtime, while the generated
code must be replaced each time the data source is modified.
Thus the threat of dissynchronization with the data source
is eliminated.

Type providers also have disadvantages. First of all, testing
type providers is very challenging because an IDE instance
with any code that uses a TP, including unit tests, locks
the DLL that contains the type providers and thus prevents
rebuilding it. Also, debugging a type provider is a challenging
process that requires two IDE instances and unusual setup,
and editing TP is still impossible until the other IDE instance
is closed.

3 OpenCL type provider
In order to simplify usage of existing OpenCL C kernels
in applied software, we propose the OpenCL type provider
which is implemented as a part of Brahma.FSharp and works
as follows. The type provider loads the specified OpenCL
C file, performs lexing and parsing of the loaded file, and
generates an F# type with static functions that have the same
signatures as the original OpenCL functions. After that one
can use the provided functions inside code quotations, which
will be compiled by Brahma.FSharp to OpenCL C. Type check
of calls to referenced OpenCL functions will be performed
during the compilation of F# code.

To use OpenCL type provider in a project, the user has to
include the DLL containing the TP. Then, the KernelProvider
type should be initialized with the proper static parameters,
which there are two: PathToFile specifies the path to the
OpenCL C source file being included; TreatPointersAsArrays
defines whether the function parameters in OpenCL source
code that are pointers are represented in F# environment
with the corresponding array type or reference type (ByRef
in F#).

The generated type provides all functions from theOpenCL
C file as static F# functions. Listing 1 shows an example of
TP usage: the file mygemm.cl is included, and the function
myGEMM1 from that file is generated within the provided
type in F#.

l e t [< L i t e r a l >] c l S ou r c eP a t h =
__SOURCE_DIRECTORY__ + " /MyGEMM/mygemm . c l "

type Prov ided = Ke rne l P rov i d e r < c l Sou r c ePa th ,
T r e a t Po i n t e r sA sA r r ay s = t rue >

l e t cmd = <@ fun . . . −> Prov ided .myGEMM1 . . . @>

Listing 1. Example of TP usage

The screenshots below show examples of how the pro-
posed type provider enhances the development process. Type
information of the reused code becomes available, as well
as code suggestions (figure 1). Compile-time type check of
interactions with the reused code is performed (figure 2).

Figure 1. Code suggestions and type information in IDE

Figure 2. Compile-time type check with TP

4 Discussion
Our solution works on .NET and Mono (for Mac and Linux)
and is published within NuGet package [9].
We can propose some possible directions for the future

work. First of all, it is necessary to improve OpenCL C parser
and translator which are used in type provider. This is re-
quired for complex kernels handling, and also for deeper
and more transparent integration of OpenCL C and F# type
systems. For example, running OpenCL code on different
devices requires proper configuration of parameters such
as grid size and tile size. Brahma.FSharp allows to set grid
parameters but does not allow to pass arbitrary constants.
Therefore, header files (.h) containing #define preprocessor
macros may be required along with the reused OpenCL C
code. We hope to find a way to mitigate this restriction in
the future.
Another direction is unification of the kernel primitive

provided by Brahma.FSharp and kernels loaded by TP. It
looks natural for an end user to think that kernel primitives
from Brahma.FSharp and OpenCL C kernels can be used
in the same manner, but currently we have two different
representations for them.

References
[1] Brahma.FSharp. 2016. Brahma.FSharp. Brahma.FSharp official page.

(2016). http://yaccconstructor.github.io/Brahma.FSharp/ Date ac-
cessed: 27.03.2018.

http://yaccconstructor.github.io/Brahma.FSharp/

TyDe’18, September 27, 2018, St. Louis, Missouri, United States

[2] BlueMountain Capital. 2014. F# R Type Provider. (2014). http:
//bluemountaincapital.github.io/FSharpRProvider/ Date accessed:
27.03.2018.

[3] Gabriele Cocco. 2014. FSCL: Homogeneous programming and execution
on heterogeneous platforms. Ph.D. Dissertation. University of Pisa.

[4] F# Community. 2014. SQLProvider. (2014). https://fsprojects.github.
io/SQLProvider/ Date accessed: 27.03.2018.

[5] CUSP. 2015. CUSP. CUSP official page. (2015). https://cusplibrary.
github.io/ Date accessed: 27.03.2018.

[6] F# Data. 2016. F# Data: Library for Data Access. (2016). https://fsharp.
github.io/FSharp.Data/ Date accessed: 27.03.2018.

[7] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Pe-
terson, and Jack Dongarra. 2012. From CUDA to OpenCL: Towards a
Performance-portable Solution for Multi-platform GPU Programming.
Parallel Comput. 38, 8 (2012), 391–407.

[8] J. Fung, F. Tang, and S. Mann. 2002. Mediated reality using computer
graphics hardware for computer vision. In Proceedings. Sixth Interna-
tional Symposium on Wearable Computers, (ISWC ’02). IEEE Computer
Society, Washington, DC, USA, 83–89. http://dl.acm.org/citation.cfm?
id=862896.881093

[9] Semyon Grigorev. 2013. Brahma.FSharp NuGet package. (2013). https:
//www.nuget.org/packages/Brahma.FSharp Date accessed: 27.03.2018.

[10] Khronos Group. 2008. OpenCL. The open standard for parallel pro-
gramming of heterogeneous systems. (2008). http://www.khronos.org/
opencl/ Date accessed: 27.03.2018.

[11] ManagedCUDA. 2014. ManagedCUDA. ManagedCUDA official
page. (2014). https://kunzmi.github.io/managedCuda/ Date accessed:
27.03.2018.

[12] Microsoft Developer Network. 2016. Type Providers. (2016).
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/tutorials/
type-providers/ Date accessed: 27.03.2018.

[13] Nvidia. 2006. CUDA. Parallel Programming and Computing Platform.
(2006). http://www.nvidia.com/object/cuda_home_new.html Date
accessed: 27.03.2018.

[14] QuantAlea. 2010. Alea GPU. QuantAlea official page. (2010). http:
//www.quantalea.com/ Date accessed: 27.03.2018.

[15] Don Syme, Keith Battocchi, Kenji Takeda, DonnaMalayeri, Jomo Fisher,
Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo Taveggia,
et al. 2012. Strongly-typed language support for internet-scale infor-
mation sources. Technical Report MSR-TR-2012–101, Microsoft Research
(2012).

http://bluemountaincapital.github.io/FSharpRProvider/
http://bluemountaincapital.github.io/FSharpRProvider/
https://fsprojects.github.io/SQLProvider/
https://fsprojects.github.io/SQLProvider/
https://cusplibrary.github.io/
https://cusplibrary.github.io/
https://fsharp.github.io/FSharp.Data/
https://fsharp.github.io/FSharp.Data/
http://dl.acm.org/citation.cfm?id=862896.881093
http://dl.acm.org/citation.cfm?id=862896.881093
https://www.nuget.org/packages/Brahma.FSharp
https://www.nuget.org/packages/Brahma.FSharp
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
https://kunzmi.github.io/managedCuda/
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/tutorials/type-providers/
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/tutorials/type-providers/
http://www.nvidia.com/object/cuda_home_new.html
http://www.quantalea.com/
http://www.quantalea.com/

	Abstract
	1 Introduction
	2 F# type providers
	3 OpenCL type provider
	4 Discussion
	References

