Comprehending Monoids with Class (Extended Abstract)

Lionel Parreaux
EPFL, Switzerland

Abstract

The design of embedded database query languages has long
relied on monadic comprehension (and specifically list com-
prehension), a natural foundation for expressing queries over
collections of data. We argue that monoid comprehension
is an interesting alternative foundation for such languages.
We show that a generalized version of the monoid com-
prehension calculus can be naturally encoded in languages
with support for type classes, and that this unlocks a new
kind of expressive power — among other things, it gives
us a grouping construct for free and it allows queries mix-
ing heterogeneous data types (lists, sets, multisets, infinite
streams, maps, etc.), while using the type system to stati-
cally verify some desirable properties about these queries.
We believe that these new directions have the potential of
making language-integrated queries more pleasant to use,
more expressive, and eventually easier to optimize.

ACM Reference Format:
Lionel Parreaux and Christoph E. Koch. 2018. Comprehending

Monoids with Class (Extended Abstract) . In Proceedings of Type-Driven
Development (TyDe’18). ACM, New York, NY, USA, 3 pages. https:

//doi.org/

1 Introduction

In functional programming circles, the study of monadic list
comprehension and of its generalization to arbitrary monads
has attracted persistent interest [1, 4, 5, 7-11]. Below is an
example list comprehension that computes the cartesian
product of two lists xs and ys and filters each resulting (x, y)
pair so that x is greater than y:

[(y)lx x5, yeys, x>y]

In this extended abstract, we turn our attention to a dif-
ferent interpretation of comprehension based on monoids
rather than monads, and we argue that it is often more ap-
propriate for expressing database queries. The idea is not
new, but seems not to have received the attention it deserves
from this community. The list comprehension above can be
rewritten in monoid comprehension syntax [2] as follows:

+H{ (x,y) | x — x5, y —ys, x >y }

where ++ denotes list concatenation. One major difference
of this calculus is that xs and ys are not required to be lists —
they can be other “collection monoids” (monoids with a unit
element), and the aggregated result needs not be a list either
— it can be another monoid (not necessarily a collection). In
general, a monoid comprehension has syntax M{ e | p },

TyDe’18, September 27, 2018, St. Louis, Missouri, United States

Christoph E. Koch
EPFL, Switzerland

where each p is either a generator x < xs or a boolean
predicate acting like a guard, and M is the merge operation
denoting the result monoid. Crucially, not all combinations
of monoids are allowed. For example, if one generator’s right-
hand side is a set, the result type cannot be a list, because
that would make the semantics of the query dependent on
the order in which the set is iterated (which is unspecified).
This not only makes query semantics deterministic, but also
gives more freedom to the query engine, which has more
options for parallelizing the query execution.

This notation, introduced by Fegaras and Maier [2, 3] only
supports a predefined set of monoids. Though the princi-
ples are general and actual languages may add support for
more monoids, there is no way to express the composition
of monoid types from existing types, which is a staple of
functional programming with type classes. For example, a
tuple of two monoids is also a monoid, and a map where
the values form a semigroup is a monoid; but how shall we
denote the ‘merge’ operation M for such compositions?

Notation being a central tool of thought [6], it is perhaps
unsurprising that this restrictive notation has masked the
true potential of monoid comprehensions for so long. We
can get a sense of their real expressive power by writing
them in terms of type classes, which leave monoid instances
to be resolved and composed implicitly. In the example be-
low, we demonstrate an embedding in Scala, whose for-
comprehension syntax is not necessarily monadic and can
easily be repurposed to accept a monoidal interpretation:

for { fname <- fileNames
word <- streamFile(fname).characters.splitOn(' ')
if word.nonEmpty }
yield (avg(word.length.toDouble) ,
count ().groupedBy (word. toLowerCase))

This query iterates over all the words contained in a set
of files and aggregates the global average word length as
well as per-word case-insensitive occurrence counts. This is
desugared to a composition of map, flatMap and filter, which
we have overloaded to aggregate monoids. For example, one
signature of map is (A => R) => As => R where R has to be a
monoid and As has to be a finite source of A elements. The type
inferred is (Option[Avg[Doublel], Map[String, NonZero[Nat]]).
This query cannot be written as a single-pass monadic
comprehension: first, we would have to express several tra-
versals, as monadic comprehension does not offer a way to
aggregate values “in parallel”; second, we would not be able
to mix different collection types as above, requiring explicit
conversions; third, we would be creating many more inter-
mediate collections; fourth, we would have to use an ad-hoc

https://doi.org/
https://doi.org/

TyDe’18, September 27, 2018, St. Louis, Missouri, United States

Lionel Parreaux and Christoph E. Koch

Canonical Semigroup ‘ Associated Canonical Monoid Properties
(Nonzero[Natl, _ + _) (Nat, _+ _, @) C
(List[TI, _ ++ _) (List[Tl, _ ++ _, Nil) OF
(NonEmpty[Set[T1], _ union _) (set[T1, _ union _, Set.empty) CIF
(Max[Natl, _ max _) (Max[Nat], _ max _, @) CIl
(Max[Intl, _ max _) (Option[Max[Int]], _.flatMap(m => m max _), None) CI
(Streamed[T], _ concat _) (Streamed[T], _ concat _, Streamed.empty) LO
(Incriset[T11, _ concat _) (IncrCset[T1], _ concat _, Incr.empty) ILO
(Map[K,NonZero[Nat]], _ merge _) (Map[K,NonZero[Nat]], _ merge _, Map.empty) CF

Table 1. Some example canonical semigroup instances, their associated canonical monoid forms, and their properties.
Where C = commutative, I = idempotent, L = lazy, and for data sources O = ordered, F = finite.

implementation of the group-by functionality, whereas all
the syntax x.groupedBy(y) above does is return a singleton
Map(x -> y), which is a monoid, giving us grouping for free.
The monadic query would look like like the following:

val (lens,wrds) = (for { fname <- fileNames

wrd <- streamFile(fname).characters.splitOn(' ').tolist
if wrd.nonEmpty 3}

yield (wrd.length.toDouble, w.toLowerCase)).unzip;
(average(lens), wrds.groupBy(identity).mapValues(_.size))

In the rest of this extended abstract, we briefly describe
our generalization of MCC, and its embedding in Scala — to
the best of our knowledge the first such typed embedding.

2 Semigroups and Canonical Monoids

Reasoning exclusively about monoids is too restrictive; semi-
groups (which are like monoids, but do not require a zero
element) come up when we know that an aggregation will
at least consume one element — that is the case when group-
ing elements into a map, as each sub-aggregate for a given
key will have at least one element, otherwise the key simply
would not be in the map.

We determine the semantics of comprehensions based on
the monoid and semigroup instances! of the types involved
in the yield part of the queries. In order to use non-standard
instances (such as product on integers instead of sum), we
use zero-overhead new-types such as Product and Max, with
functions product(x: N): Product[N] for Numeric types N and
max(x: 0): Max[0] for types 0 with an Ordering instance, etc.

Many aggregation types are semigroups but not monoids;
for example, minimum on natural numbers or union on
non-empty sets. In particular, we provide the Nonzero[N] and
NonEmpty[X] wrapper types, which are zero-overhead “phan-
tom subtypes” (so that Nonzero[N] <: N and NonEmpty[Xs] <:
xs) that statically add more information to a type — a sort
of simple type refinement — and these types are only semi-
groups when their wrapped type is a monoid. Note that any
semigroup can be lifted to a monoid by wrapping it in an

! We use the open-source cats functional programming library for Scala,
which provides type classes such as Monoid and CommutativeMonoid, as
well as many standard instances (https://github.com/typelevel/cats).

Option type, where None becomes the ad-hoc zero element,
but some semigroups actually have more natural monoid
generalizations than wrapping them in an option type. For
example, the canonical monoid form of Nonzero[Nat] is Nat.
Naturally, it should be illegal to write a comprehension
that, for instance, aggregates the minimum age in a list of
persons, i.e., for { p <- persons } yield min(p.age) (because
if persons is empty, the result is ill-defined). However, it would
make for a poor user experience to flat-out reject such queries
and require users to write yield Some(min(p.age)); instead, we
defined a type class which automatically lifts a semgroup to
its “canonical monoid” when required. In the case above, it
will give our query return type Option[Min[Nat]1. On the other
hand, count() has return type Nonzero[Nat] whose canonical
monoid is Nat, not Option[NonZero[Nat1], so a query ending
with yield count() will have return type Nat, while a query
ending with yield count().groupedBy(k) (which is really syn-
tactic sugar for the singleton Map(k -> 1)) will have return
type Map[K,NonZero[Nat11. Table 1 gives some more examples.

3 Heterogeneous Collection Types

In its original formulation, the monoid comprehension cal-
culus of Fegaras and Maier [2, 3] distinguishes between
whether the source collection monoids are ordered, may
contain repeated elements, or both. This determines which
properties the result monoid should have for the query to
have the properties alluded to in §1 (well-defined seman-
tics and ability to be parallelized); respectively, it should be:
commutative, idempotent, or both. We refine and generalize
these notions with more source properties and their asso-
ciated monoid restrictions, namely: if the source collection
is NonEmpty the result only needs to be a semigroup; and if
the source is not known to be finite, then the result monoid
must be what we call “lazy” or “incremental” (this allows
aggregating streams and defining infinite stream pipelines).
All these conditions and restrictions are enforced statically
via Scala’s type system, using implicit-based overloading
(type classes) together with Scala’s mechanism for prioriti-
zation of implicit search, so that the most specific (i.e., the
less restrictive) for comprehension interface is selected auto-
matically depending on the types of the source collections.

https://github.com/typelevel/cats

Comprehending Monoids with Class (Extended Abstract)

References
[1] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007.

[10

[

Links: Web Programming Without Tiers. In Formal Methods for Com-
ponents and Objects, Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 266—-296.

Leonidas Fegaras and David Maier. 1995. Towards an Effective Calculus
for Object Query Languages. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’95). ACM,
New York, NY, USA, 47-58.

Leonidas Fegaras and David Maier. 2000. Optimizing Object Queries
Using an Effective Calculus. ACM Trans. Database Syst. 25, 4 (Dec.
2000), 457-516.

Mary F. Fernandez, Jérome Siméon, and Philip Wadler. 2001. A Semi-
monad for Semi-structured Data. In Proceedings of the 8th International
Conference on Database Theory (ICDT 01). Springer-Verlag, London,
UK, UK, 263-300.

Jeremy Gibbons. 2016. Comprehending Ringads: For Phil Wadler, on
the Occasion of his 60th Birthday. In A List of Successes That Can
Change the World (LNCS), Vol. 9600. Springer, 132-151.

Kenneth E. Iverson. 1980. Notation As a Tool of Thought. Commun.
ACM 23, 8 (Aug. 1980), 444-465. https://doi.org/10.1145/358896.358899
Simon Peyton Jones and Philip Wadler. 2007. Comprehensive Com-
prehensions. In Proceedings of the ACM SIGPLAN Workshop on Haskell
Workshop (Haskell °07). ACM, New York, NY, USA, 61-72.

Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Recon-
ciling Object, Relations and XML in the .NET Framework (SIGMOD
°06). ACM, 706-706.

Phil Trinder. 1992. Comprehensions, a Query Notation for DBPLs. In
Proc. of the 3rd DBPL workshop (DBPL3). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 55-68.

Philip Wadler. 1990. Comprehending Monads. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming (LFP *90).
ACM, New York, NY, USA, 61-78.

[11] LIMSOON WONG. 2000. Kleisli, a functional query system. Journal of

Functional Programming 10, 1 (2000), 1951[\556.

TyDe’18, September 27, 2018, St. Louis, Missouri, United States

https://doi.org/10.1145/358896.358899

	Abstract
	1 Introduction
	2 Semigroups and Canonical Monoids
	3 Heterogeneous Collection Types
	References

