
Extended Abstract: Reasoning about Effect
Parametricity Using Dependent Types

Joris Ceulemans
KU Leuven

Andreas Nuyts
KU Leuven

Dominique Devriese
Vrije Universiteit Brussel

Keywords effect polymorphism, effect parametricity, de-
pendent types

1 Introduction
Consider the following function from the Haskell Prelude.

sequence :: Monad m => [m a] -> m [a]

It takes a list of monadic computations and performs them
sequentially, collecting their results in a list. From this de-
scription it is clear that if all monadic computations in a list
ms of type [m a] are pure, then sequence ms is pure as well.
However, this property does not depend on the implementa-
tion of sequence but can be shown for every function of the
same type. The key observation is that a function of this type
must work for any monad and cannot inspect the monad it
is instantiated with. Therefore such a function cannot intro-
duce new effects, all it can do is composing and rearranging
the effects contained in its argument list. Hence, if this ar-
gument list only contains pure monadic computations, the
returned result will also be pure.
An argument like the one presented above can be made

more precise using effect parametricity, which was done
metatheoretically in [4]. In this extended abstract, we de-
scribe how properties involving effect parametricity can be
proved in ParamDTT, a dependent type system with support
for parametricity that was developed in [2].

2 Parametricity
Intuitively, a polymorphic function is called parametric if its
implementation does not inspect the type it is instantiated
with and therefore applies the same algorithm for every type.
In languages like System F or Haskell, every polymorphic
function is automatically parametric because the type system
does not allow the definition of non-parametric functions.
The intuition about parametric polymorphism was formal-
ized by John Reynolds using relations, stating that a para-
metrically polymorphic function maps related arguments
to related results [3]. Using this relational interpretation
Philip Wadler subsequently described a procedure to derive
from a polymorphic type a theorem which is satisfied by all
polymorphic functions of that type [5].
In [4], Janis Voigtländer extended Reynolds’s relational

interpretation and Wadler’s procedure to polymorphism in-
volving type constructor classes such as Monad. From this,

TyDe 2019, August 2019, Berlin, Germany
2019.

he derived properties about functions that quantify paramet-
rically over a monad (so-called effect polymorphic functions)
such as the function sequence from the introduction.

3 Parametricity and Dependent Types
In Martin-Löf type theory (MLTT), one can use universe
types to define polymorphic functions. The polymorphic
identity function can for instance be written as

λ(X : U) . λ(x : X) . x : Π(X : U).X → X .

However Nuyts, Vezzosi and Devriese [2] showed that MLTT
does not in general enforce that polymorphic functions de-
fined in this way are parametric; in fact it is possible to define
non-parametric polymorphic functions in MLTT without
additional axioms. In order to restore parametricity they
developed in the same paper ParamDTT, a dependent type
system based on MLTT in which the type of a function can
contain a parametricity annotation and which provides tools
to prove results à la Wadler internally.
More concretely, in ParamDTT we can distinguish be-

tween parametric dependent products Π♯(x : A).B contain-
ing dependent functions that – intuitively – can use the
argument x only in type annotations1, and continuous de-
pendent products Π(x : A).B containing functions that can
use the argument x in their implementation. Similarly there
are parametric dependent sums Σ♯(x : A).B whose pairs
make their first component available only for parametric
use, and continuous dependent sums Σ(x : A).B behaving
normally.
In order to prove parametricity results internally in the

type system, ParamDTT provides a way to express relations
in the type system. There is an interval type I with two
axiomatic elements 0, 1 : I. A relation between two types
C,D : U is then expressed using a continuous function
B : I → U with B 0 ≡ C and B 1 ≡ D, which is called
a bridge between C and D. Subsequently, a proof that c :
C and d : D are related is expressed using a parametric
function p : Π♯(i : I).B i with p 0♯ ≡ c and p 1♯ ≡ d , which is
called a path over B between c and d . The continuous (no
symbol) and parametric (♯) modalities describe the behavior
of functions with respect to bridges and paths: continuous
functions respect bridges and paths and parametric functions
respect paths and strengthen bridges to paths. In fact there is
1This intuition is quite appropriate for arguments of type U. However,
parametric functions taking an argument of e.g. type U ⊎ U, may still
distinguish between types coming from the left and from the right.

TyDe 2019, August 2019, Berlin, Germany Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

also a pointwise modality (¶) whose functions respect paths
but have no action on bridges.
Additionally, ParamDTT also provides tools to interpret

a function f : C → D as a relation. More concretely, for
such a function f there will be a bridge /f \ : I→ U with
/f \ 0 ≡ C and /f \ 1 ≡ D. Furthermore there are functions
push f : Π♯(i : I).C → /f \ i and pull f : Π♯(i : I)./f \ i →
D with push f 0♯ ≡ idC , push f 1♯ ≡ f , pull f 0♯ ≡ f and
pull f 1♯ ≡ idD These functions allow us to construct a path
between any c : C and its image f c : D.

C /f \ i D

f

push f i ♯ pull f i ♯

Finally, there is a path degeneracy axiom asserting that
the endpoints of any homogeneous path p : Π♯(i : I).A (i.e.
a path over a constant bridge) are equal. More precisely, it
gives us an element path-to-eqp : p 0 =A p 1 of the identity
type betweenp 0 andp 1 and this is the final piece that allows
us to prove parametricity results.

4 Effect Parametricity and Dependent
Types

In our current work we are studying how the machinery
provided by ParamDTT can be used to prove properties
involving effect parametricity, such as the one described
in the introduction. For this purpose we define the type of
premonads (non-standard terminology) in ParamDTT.

Premonad :≡
Σ(M : U → U).

Σ¶(return : Π♯(X : U).X → M X).

Σ¶(bind : Π♯(X ,Y : U).M X → (X → MY) → MY).⊤

As we can see, a premonad is defined to be a 4-tuple consist-
ing of a type operator, return and bind operations and an
element of the unit type ⊤. This last piece of irrelevant infor-
mation is included because we want a premonad to depend
pointwise on its return and bind operations (for technical
reasons), which can be done using the Σ¶-type. The reason
we call this a premonad and not a monad is that using de-
pendent types we can express the monad laws and a monad
will be a premonad satisfying those laws.2

As an example, we will show for any effect polymorphic
function f : Π♯(M : Premonad).MA → MA (with A an
arbitrary closed type) that if M is a monad andm : MA is
pure, then so is f M ♯m : MA. This is a statement similar to
Theorem 1 in [4]. More precisely, wewill define the pure com-
putations in MA to be the elements of the form returnM a
for some a : A and we will then construct for any a : A
2In fact, what we call a premonad corresponds exactly to an instance of the
Monad typeclass in Haskell since Haskell cannot impose the monad laws.

a term thma : returnM (f idpm♯ a) =M A f M ♯ (returnMa)
where idpm is the identity premonad.

For this purpose, we use the function returnM : A → MA
to construct a bridge /returnM\ between A and MA and a
path

pa i
♯ :≡ push returnM i♯ a : /returnM\ i

over this bridge between a and returnM a. It is also possible,
but a bit more technically involved, to construct a bridge
pmbr : I → Premonad inside the type Premonad between
the identity premonad (idpm) andM . In summary, using the
bridge and path we have just constructed we get for every
i : I a premonad pmbr i and a corresponding monadic value
pa i

♯ . Hence we can apply f to these two arguments as in
the following diagram, in which the middle row depends on
i reduces to the upper row if i ≡ 0 and to the lower if i ≡ 1.

f idpm a f idpm♯ a

f pmbr i pa i
♯ f (pmbr i)♯ (pa i♯)

f M returnM a f M ♯ (returnM a)

Here, the first argument comes from a bridge (dashed line)
but as f is parametric in its first argument, this bridge is
strengthened to a path. Subsequently, the second argument
comes from a path which is respected by f . As a result we
have a path

f (pmbr i)♯(pa i♯) : /returnM\ i

between f idpm♯ a and f M ♯ (returnM a). We can then apply
pull returnM to get a path

pull returnM i♯
(
f (pmbr i)♯(pa i♯)

)
: MA

between returnM (f idpm♯ a) and f M ♯ (returnM a). Since this
path is homogeneous, the path degeneracy axiom gives us
an element of the identity type between its endpoints, which
is what we wanted to construct.
In summary, we have seen that free theorems involv-

ing effect parametricity can be proved in the dependent
type system ParamDTT. The above example is also formal-
ized using the parametric branch of Agda implementing
ParamDTT.3 Formalizations of the theorems that Voigtlän-
der proved metatheoretically [4], are provided there as well.
For more information about the work described in this

abstract, we refer to Joris Ceulemans’s master’s thesis [1].
In the future we intend to investigate how effect para-

metricity as described in this extended abstract can be ap-
plied for practical reasoning about effectful programs in
dependently-typed languages.

3See https://github.com/JorisCeulemans/effect-param-agda

https://github.com/JorisCeulemans/effect-param-agda

Extended Abstract: Effect Parametricity Using Dependent Types TyDe 2019, August 2019, Berlin, Germany

Acknowledgments
Andreas Nuyts holds a Ph.D. Fellowship from the Research
Foundation - Flanders (FWO).

References
[1] Joris Ceulemans. 2019. Reasoning about Effect Parametricity Using De-

pendent Types. Master of Science in Mathematics. KU Leuven, Bel-
gium. https://github.com/JorisCeulemans/effect-param-agda/blob/
master/ThesisJorisCeulemans.pdf

[2] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Para-
metric Quantifiers for Dependent Type Theory. Proc. ACM Program.
Lang. 1, ICFP, Article 32 (Aug. 2017), 29 pages. https://doi.org/10.1145/
3110276

[3] John C. Reynolds. 1983. Types, Abstraction, and Parametric Polymor-
phism. In Information Processing. North Holland, 513–523.

[4] Janis Voigtländer. 2009. Free Theorems Involving Type Constructor
Classes: Functional Pearl. In International Conference on Functional
Programming. ACM, 173–184.

[5] Philip Wadler. 1989. Theorems for Free!. In Functional Programming
Languages and Computer Architecture. ACM, 347–359. https://doi.org/
10.1145/99370.99404

https://github.com/JorisCeulemans/effect-param-agda/blob/master/ThesisJorisCeulemans.pdf
https://github.com/JorisCeulemans/effect-param-agda/blob/master/ThesisJorisCeulemans.pdf
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404

	1 Introduction
	2 Parametricity
	3 Parametricity and Dependent Types
	4 Effect Parametricity and Dependent Types
	Acknowledgments
	References

