
Augmenting Type Signatures for Program Synthesis
(Extended Abstract)

Bruce Collie
University of Edinburgh
bruce.collie@ed.ac.uk

Michael O’Boyle
University of Edinburgh

mob@inf.ed.ac.uk

Abstract
Effective program synthesis requires a way to minimise the
number of candidate programs being searched. A type sig-
nature, for example, places some small restrictions on the
structure of potential candidates. We introduce and motivate
a distilled program synthesis problem where a type signa-
ture is the only machine-readable information available, but
does not sufficiently minimise the search space. To address
this, we develop a system of property relations that can be
used to flexibly encode and query information that was not
previously available to the synthesiser. Our experience using
these tools has been positive: by encoding simple properties
and by using a minimal set of synthesis primitives, we have
been able to synthesise complex programs in novel contexts.

1 Motivation
Program synthesis addresses the problem of automatically
generating correct programs, rather than writing them by
hand. A specification constrains the allowable behaviour of
a solution; the structure of generated programs and their
specifications varies between different synthesis problems.

Our central research aim is to better exploit heterogeneous
hardware and libraries in user code. Ideally, the compiler
should automatically match user code to the best compatible
device or library. Our methodology is to automatically learn
a formal model of library behaviour that can be used to
discover compatible code. We do this by applying program
synthesis to functions in libraries with a C interface, which
gives us the specification:

Given a type signatureT ≜ (τ0, . . . ,τn) → τr and
a function f : T , a correct candidate program
д : T is one that for all correctly typed lists of
input arguments x, f (x) = д(x).

In the context of this problem, we are limited to the C
type system for compatibility with these existing library
interfaces: we have a set of concrete types (int, float, etc.),
along with type constructors for pointers (int*), aggregates
(struct{int x; int y;}) and arrays (int[10]).

Unfortunately, the synthesis problem corresponding to
this specification is intractable given only the type signature
and behaviour of a function. The space of potential solutions
is too large to perform any kind of practical search—we

TyDe’19, August 18, 2019, Berlin, Germany
2019.

need some way of reducing its size. Oracle-guided inductive
synthesis [3, 4] makes use of additional information provided
by the function oracle to do this (for example, by providing
minimal counterexamples to a possible solution), but our
black-box C functions do not lend themselves well to this
model.

The only formal description we have available for a library
function is its type signature, but informal (i.e. human- rather
than machine-readable) information can also be used to help
the synthesiser. Special-casing individual sources of infor-
mation in the synthesiser is not scalable—ideally, it would
be encoded more formally alongside the type signature to
allow the synthesiser to make general use of them during
the synthesis process.

2 Property Relations
The solution we propose is to augment function type sig-
natures with a set of property relations over the function’s
parameters and a set of literal values. This representation
is in the vein of a simple logic programming language and
allows for flexible encodings of human knowledge.
Our formal definition of these relations is as follows: Let

f be a function with type signature T ≜ (τ0, . . . ,τn) → τr ,
taking parameters (p0 : τ0, . . . ,pn : τn). Then, define:

P ≜ {p0, . . . ,pn}

C ≜ set of all C types
S ≜ set of all string literals
N ≜ set of all numeric literals
U ≜ P ∪C ∪ S ∪ N

f is then associated with a set of relations Rf . Each relation
ri ∈ Rf satisfies ri ⊆ U k for some k > 0, and has a uniquely
identifying name I (ri ) ∈ S associated with it.

Less formally, named relations group sets of “atoms”, where
those atoms can be function parameters, literal values or C
types. Relations are associated with a function and its type
signature, and no particular semantics is attached to them
initially (the synthesiser supplies an interpretation for the
relations it is given for a function).

Our specification for these relations is intentionally simple—
it is the smallest definition we found that would allow for
sufficiently useful properties to be encoded. Additionally, a

1



TyDe’19, August 18, 2019, Berlin, Germany Bruce Collie and Michael O’Boyle

close relationship to the function’s type signature is main-
tained: both the signature and the associated relations ex-
press facts about a function’s behaviour and the meaning
attached to its parameters.

3 Synthesis and Queries
The core methodology our program synthesiser is built on is
component-based synthesis [2, 5], where candidate programs
are composed from libraries of smaller fragments. A full de-
scription of our synthesis algorithm is outside the scope of
this paper, but a brief summary (without considering optimi-
sations or search strategies) is as follows:

• First, a set of potential program fragments is assembled,
using the type signature and property annotations
to select ones most likely to be present in a correct
program.
• Then, an iterative-deepening search enumerates valid
compositions of fragments. Some fragments do not
compose with others, depending on their context.
• For each composition, instruction sequences are sam-
pled at set program locations specified by the fragment.
Each resulting program is JIT-compiled and tested
against the reference function.

This method is in the spirit of two-phase sketching synthe-
sis [6], where an abstract or partial solution is synthesised
first, and is then instantiated to create a full solution.
Given a set of relations associated with a type signature,

the synthesiser uses a library of general heuristic patterns
to bias its search towards more likely programs. The syn-
thesiser contains a set of fragment “templates”, which are
partial programs parameterised on values ∈ U (as defined
above), along with rule-based heuristics for their instanti-
ation, written using a simple query language. Fragments
provide a control flow structure that can have further frag-
ments nested inside it, or some specific sequence of data-flow
instructions likely to occur in a solution.

The queries used to govern fragment instantiation follow
the style of a simple logic programming language: amatching
expression r (X ,Y ) is satisfied if the relation named r in the
current set is present, and contains a pair of values that can
be unified to the variables X ,Y . For a single match this is
trivial; but conjunctions may be formed, leading to more
complex unifications. Additionally, negative matches can be
used (but require a conjunction with a positive match to
unify). Finally, a standard set of queries can be made of the
function’s type signature. An example rule for instantiating
a joint iteration is:

size(X ,N ) ∧ size(Y ,N ) ∧

type(X ,T ) ∧ type(Y , S) ∧ type(N , int)

is-pointer (T ) ∧ is-pointer (S)
=⇒ zip_loop(N ,T ,X , S,Y )

4 Worked Example
An illustrative example of how our approach helps to model
and understand performance libraries is the BLAS [1] stan-
dard. By synthesising equivalent programs to functions in
BLAS, we have been able to discover opportunities for better
library usage in existing scientific code.
The GEMV function in BLAS performs a general matrix-

vector multiplication (y ← αAx + βy). It is a challenging
target for program synthesisers: it contains nested control
flow, 7 input parameters and complex array indexing expres-
sions. For the signature:
void gemv(int m, int n, float alpha, float *a,

float *x, float beta, float *y);

we provide the minimal set of property annotations:
{size(x ,n), size(y,m),output(y)}

Our synthesiser matches a number of general rules against
these properties to reach a correct solution for GEMV. The
first is a general loop rule, which matches both x and y:

size(X ,N ) ∧ type(N , int) ∧ type(X ,T )

∧ is-pointer (T ) =⇒ loop(N ,T ,X )

Two loops are instantiated and added to the set of potential
fragments. The next rule is one to perform a store to elements
of y:

output(X ) ∧ type(X ,T ) =⇒ store(X ,T )

Finally, a negative-match rule matches a:

size(X , _) ∧ type(X ,T ) ∧ is-pointer (T )
=⇒ affine_access(X ,T )

Other rules are present in the synthesiser, but these are the
only ones that match the properties associated with GEMV.
The fragments instantiated by the successful matches can
compose in such a way that the algorithmic core of GEMV
is realised. After this, all that remains is to search for the
correct sequence of dataflow instructions:

for(int i = 0; i < m; ++i) {
// code...
for(int j = 0; j < n; ++j) {
float v = x[?];
// code...

}
y[i] = ?;

}

Our synthesis results are promising: by using minimal
property annotations obtained from documentation, together
with general-purpose heuristic queries, we have been able
to synthesise a wide variety of programs. The synthesised
programs come from a number of domains, and have led
(with other work) to significant performance improvements
on real world scientific programs.

2



Augmenting Type Signatures for Program Synthesis TyDe’19, August 18, 2019, Berlin, Germany

References
[1] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G.

Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K.
Remington, and R. C. Whaley. 2001. An Updated Set of Basic Linear
Algebra Subprograms (BLAS). ACM Trans. Math. Software 28 (2001),
135–151.

[2] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. 2011. Synthesis of Loop-Free Programs. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’11). ACM, New York, NY, USA, 62–73.
https://doi.org/10.1145/1993498.1993506

[3] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.
Oracle-Guided Component-Based Program Synthesis. In Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1 (ICSE ’10). ACM, New York, NY, USA, 215–224. https:
//doi.org/10.1145/1806799.1806833

[4] Susmit Jha and Sanjit A. Seshia. 2015. A Theory of Formal Syn-
thesis via Inductive Learning. arXiv:1505.03953 [cs] (May 2015).
arXiv:cs/1505.03953 http://arxiv.org/abs/1505.03953

[5] Yoad Lustig and Moshe Y. Vardi. 2009. Synthesis from Component
Libraries. In Proceedings of the 12th International Conference on Foun-
dations of Software Science and Computational Structures: Held As Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009 (FOSSACS ’09). Springer-Verlag, Berlin, Heidelberg, 395–409.
https://doi.org/10.1007/978-3-642-00596-1_28

[6] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthe-
sizing Highly Expressive SQL Queries from Input-Output Examples.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, New York, NY,
USA, 452–466. https://doi.org/10.1145/3062341.3062365

3

https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
http://arxiv.org/abs/cs/1505.03953
http://arxiv.org/abs/1505.03953
https://doi.org/10.1007/978-3-642-00596-1_28
https://doi.org/10.1145/3062341.3062365

	Abstract
	1 Motivation
	2 Property Relations
	3 Synthesis and Queries
	4 Worked Example
	References

