
Generic Enumerators (Extended Abstract)
Cas van der Rest

c.r.vanderrest@students.uu.nl
Universiteit Utrecht

Wouter Swierstra

w.s.swierstra@uu.nl
Universiteit Utrecht

Manuel Chakravarty

manuel.chakravarty@iohk.io
Input Output HK

Introduction
Since the introduction of QuickCheck [3], property based
testing has proven to be effective for the discovery of bugs.

However, defining the properties to test is only part of the

story: it is equally important to generate suitable test data.
In particular, requiring random test data to satisfy arbitrary

preconditions can lead to skewed distributions: for exam-

ple, naively generating random sorted lists will rarely yield

long lists. As a result, developers need to design custom

generators carefully—but these generators can become ar-

bitrarily complex. When testing a compiler, for example, it

can be quite challenging to define a good generator that is

guaranteed to produce well-formed programs. [2, 7]

In this brief abstract we propose to address this problem

using the observation that well-formed inputs can often be

described by (indexed) inductive datatypes. By defining a

generic procedure for enumerating indexed datatypes, we

can obtain a way of safely generating precise test data.

We will sketch how to define a generic enumerator for a

collection of datatypes in several steps:

• We define some universe of types U together with its

semantics of the form J_K : U → S, where S : Set1
may vary across the different instantiations of U.

• Next, we define a datatype generic function producing

a list of elements, bounded by some size parameter n;

enumerate : (u : U) → N → List J u K

• Finally, we formulate the key completeness property
that we expect of our enumerators:

∀ {u : U} → (x : J u K) →
Σ[n ∈ N] (x ∈ enumerate u n)

This property states that for each possible x, there is
some size n such that x occurs in our enumeration.

We will now sketch three increasingly complex universes,

together with their corresponding generic enumerations.

Enumeration of regular types
One of the simplest universes that describes a wide class

of algebraic datatypes is the universe of regular types. This
universe contains the unit type, empty type, constant types,

and is closed under products and coproducts.

data Reg : Set where
Z U I : Reg
⊕ _⊗_ : Reg → Reg → Reg
K : Set → Reg

The associated semantics, J_K : Reg → Set → Set,
maps values of type Reg to their corresponding pattern func-

tor. By taking the fixpoint of such a pattern functor, we have

a uniform representation of a wide class of (recursive) alge-

braic datatypes:

data Fix (c : Reg) : Set where
In : J c K (Fix c) → Fix c

Examples of regular types and their respective codes include

natural numbers (U ⊕ I) or lists (U ⊕ (K a ⊗ I)).
It is reasonably straightforward to define a generic enu-

meration function:

enumerate : (c : Reg) → N → List (J c K (Fix c))

For example, the enumeration of a coproduct is a fair merge

of the left and right codes, and for products we take the

cartesian product.

Enumeration of Indexed Containers
What happens whenwe consider indexed datatypes? Initially,
we will consider indexed containers [1, 5]: indexed types that
are defined by induction over the index typeI. Following the

presentation by Dagand [5], we define indexed containers

as a triple of operations, arities and typing:

Op : I → Reg
Ar : ∀ {x} → Fix (Op x) → Reg
Ty : ∀ {x} {op : Fix (Op x)} → Fix (Ar op) → I

The setOp i describes the set of available operations at index
i;Ar op the arities of each constructor; and finally, Ty ar gives
the index corresponding to the recursive subtree at arity ar.
Together, they form a type’s Signature, and are interpreted

as a function from index to dependent pair. The first element

of the pair denotes a choice of constructor, and the second

element is a function that maps each recursive subtree to

a value of the type that results from applying the recursive

argument with the index given by the typing discipline for

that arity.

J Op ◁ Ar | Ty K x = λ i →
Σ[op ∈ Fix (Op i)] (ar : Fix (Ar op)) → x (Ty ar)

Interpretations of signatures live in I → Set, hence we
also need adapt our fixpoint, Fix, accordingly.

Examples Many familiar indexed datatypes can be described

using the universe of indexed containers, such as finite types

(Fin), well-scoped lambda terms, or the type of vectors given

below:

Σ-vec a =
let op-vec = (λ {zero → U; (suc n) → K a})

ar-vec = (λ { {zero} tt → Z; {suc n} x → U})

ty-vec = (λ { {suc n} {a} (In tt) → n})
in op-vec ◁ ar-vec | ty-vec

Each index is associated with a unique operation. We map

suc n to a constant type in op-vec, since the :: constructor
stores a value along its recursive subtree. The empty vector,

[], has no recursive subtrees; hence, its arity is the empty
type. Any non-empty vector has one subtree, so we assign its

arity to be the unit type. This single subtree has an index that

is one less than the original index, as described by ty-vec.

Generic enumerators. In the definition of indexed contain-

ers, we restricted the type of operations and arities to the

universe of regular types. As a result, we can reuse the enu-

meration of regular types to write a generic enumerator for

indexed containers. The second component of a signature’s

interpretation is a function type, so we require an enumer-

ator for function types. Inspired by SmallCheck [8] we can

define such an enumerator:

co-enumerate :

(N→ List a) → (c : Reg) → N→ List (Fix c → a)

This enables us to define enumerators for both compo-

nents of the dependent pair:

enumOp : ∀ { i : I } → N→ List (Fix (Op i))
enumAr : ∀ { i : I } { r : I → Set} → (x : Fix (Op i))

→ N→ List ((y : Fix (Ar x)) → r (Ty y))

We then sequence these operations using the monadic

structure of lists:

λ n → enumOp n >>= (λ op → op , enumAr n op)

Intuitively, this defines the enumeration of a signature as

the union of the enumerations of its constructors.

Indexed Descriptions
Not all indexed families may be readily described as indexed

containers. Consider, for example, the type of binary trees

indexed by their number of nodes:

data Tree (a : Set) : N→ Set where
Leaf : Tree a 0
Node : ∀ {n m} → Tree a n → a → Tree a m

→ Tree a (suc (n + m))

Without introducing further equalities, it is hard to cap-

ture the decomposition of the index suc (n + m) into two

subtrees of size n and m.

The universe of indexed descriptions, IDesc I, as described
by Dagand [4], is capable of representing arbitrary indexed

families. This universe makes two key modifications to the

universe of regular types: recursive positions must store

an additional field corresponding to their index and a new

combinator, ‘Σ, is added.

I : (i : I) → IDesc I
‘Σ : (S : Set) → (T : S → IDesc I) → IDesc I

Their interpretation is rather straightforward.

J I i K r = r i
J ‘Σ S T K r = Σ[s ∈ S] J T s K r

With the added ‘Σ and ‘var, we can now describe the Tree
datatype:

tree : Set → N→ IDesc N
tree a zero = ‘1
tree a (suc n’) = ‘Σ (Σ[(n , m) ∈ N × N] n + m ≡ n’)
λ {(n , m , refl) → I n ⊗ K a ⊗ I m}

The dependency between the indices of the left and right

subtrees of nodes is captured by having their description

depend on a pair of natural numbers together with a proof

that these numbers add up to the required index.

Enumerators for indexed descriptions. Since the IDesc
universe largely exposes the same combinators as the uni-

verse of regular types, we only really need to define enumerate
for the ‘Σ combinator. This is straightforward once we can

enumerate its first component.

enumerate : (δ : IDesc I) → N→ List (Fix δ)
enumerate (‘Σ s g) =
λ n → gen n >>= (λ x → x , enumerate (g s) n)

However, since ‘Σ may range over any type in Set, we
have no generic procedure to obtain a suitable enumerator.

This creates a separation between the parts of a datatype for

which an enumerator can be assembled mechanically, and

those parts for which this would be too difficult.

In the case of the Tree datatype, we see that those elements

that make it hard to generically enumerate inhabitants of this

datatype emerge quite naturally; we merely need to supply

an enumerator that inverts addition:

+-1 : (n : N) → N

→ List (Σ[(n , m) ∈ N × N] n + m ≡ n’)

Using this inversion, and the combinators we have seen

previously, we can define a function enumerate that lists all
inhabitants of Tree.

Applying our approach in Haskell. We developed a pro-

totype library in Haskell that implements the generic enu-

merator for indexed descriptions. So far, we have been able

to show that the techniques described in this abstract can

be applied to enumerate well-typed lambda terms, and are

working towards generation of well-formed terms in more

complex programming languages; specifically, Plutus Core
[6], which is used as the transaction validation language on

the Cardano blockchain.

2

References
[1] Altenkirch, T., Ghani, N., Hancock, P., McBride, C., and Morris, P.

Indexed containers. Journal of Functional Programming 25 (2015).
[2] Claessen, K., Duregård, J., and Pałka, M. H. Generating constrained

random data with uniform distribution. Journal of functional program-
ming 25 (2015).

[3] Claessen, K., and Hughes, J. Quickcheck: a lightweight tool for ran-

dom testing of haskell programs. Acm sigplan notices 46, 4 (2011), 53–64.
[4] Dagand, P.-E. A Cosmology of Datatypes. PhD thesis, Citeseer, 2013.

[5] Dagand, P.-É. The essence of ornaments. Journal of Functional Pro-
gramming 27 (2017).

[6] Input-Output-Hk. Plutus specification (https://github.com/input-

output-hk/plutus/tree/master/plutus-core-spec), Apr 2019.

[7] Pałka, M. H., Claessen, K., Russo, A., and Hughes, J. Testing an

optimising compiler by generating random lambda terms. In Proceedings
of the 6th International Workshop on Automation of Software Test (2011),
ACM, pp. 91–97.

[8] Runciman, C., Naylor, M., and Lindblad, F. Smallcheck and lazy

smallcheck: automatic exhaustive testing for small values. In Acm
sigplan notices (2008), vol. 44, ACM, pp. 37–48.

3

	References

