
Formal Investigation of the Extended UTxO Model
(Extended Abstract)

Orestis Melkonian
Information and Computing Sciences

Utrecht University
melkon.or@gmail.com

Wouter Swierstra
Information and Computing Sciences

Utrecht University
w.s.swierstra@uu.nl

Manuel M.T. Chakravarty
Input Output HK

manuel.chakravarty@iohk.io

1 Introduction
Blockchain technology has seen a plethora of applications
during the past few years [3, 5, 7], but has also unveiled a
new source of vulnerabilities1 arising from the distributed
execution of smart contracts (programs that run on the
blockchain). Since many of these applications deal with
transactions of significant funds, it is crucial that we can
formally reason about their (concurrent) behaviour.
This opens up a lot of opportunities for novel applications

of formal verification techniques. In particular, we believe
that a language-based, type-driven approach to contract de-
velopment constitutes an effective way to make their exe-
cution more predictable. To this end, we attempt to lay the
foundations for amechanized formal framework, where one
can verify that certain undesirable scenarios are impossible.
We formulate an accounting model for ledgers based on

unspent transaction outputs (UTxO), the ledger model under-
lying Bitcoin [9] and many other blockchains. We conduct
our study in Agda [10], exploiting its expressive dependent
type system to mechanically enforce desired properties stat-
ically. An executable specification of our formal develop-
ment is available on Github2.

2 Formal Model
Our formalization closely follows the abstract accounting
model for UTxO-based cryptocurrencies presented in [13],
which leaves out details of other technical components of
the blockchain such as cryptographic operations. We fur-
ther extend the original formulation to cover the extensions
employed by the Cardano blockchain platform [1]. Cardano
extends Bitcoin’s UTxO model with data scripts on transac-
tion outputs, in an effort to bring it on par with Ethereum’s
expressive account-based scriptingmodel [6], as well as sup-
port for multiple cryptocurrencies on the same ledger [2].

Transactions & Ledgers. For simplicity, we model mone-
tary quantities and hashes as natural numbers. We treat the
type of addresses as an abstract module parameter equipped
with an injective hash function. Transactions consist of a list

1https://en.wikipedia.org/wiki/The_DAO_(organization)
2https://github.com/omelkonian/formal-utxo/

TyDe’19, August 18, 2019, Berlin, Germany
2019.

of outputs, transferring a monetary value to an address, and
a list of inputs referring to previous outputs:
module UTxO (Address : Set) (_♯ :Address → N) where
record OutputRe f : Set where
field id : N -- hash of the transaction

index : N -- index in the list of outputs

record Input : Set where
field outRef :OutputRe f

R D : Set

redeemer : State → R

validator : State → R → D → Bool

record Output : Set where
field value :Value

address :Address
D : Set

data : State → D

record Tx : Set where
field inps : List Input

outs : List Output

forge :Value

fee :Value

Both inputs and outputs carry authorization scripts; for a
transaction to consume an unspent output, the result of the
validator script has to evaluate to true , given the current
state of the ledger and additional information provided by
the redeemer and data scripts3:
authorize :: Input → List Tx → Bool

authorize i l = let s = getState l in
validator i s (redeemer i s) (data (lookup l (outRef i)) s)

A ledger consists of a list of transactions, whose unspent
transaction outputs we can recursively compute:
utxo : List Tx → List OutputRe f

utxo [] = ∅
utxo (tx :: l) = (utxo l \map outRef (ins tx)) ∪ outs tx

3 Note that redeemers and data scripts can have an arbitrary result type (R
and D , respectively).

 https://en.wikipedia.org/wiki/The_DAO_(organization)
 https://github.com/omelkonian/formal-utxo/

TyDe’19, August 18, 2019, Berlin, Germany Orestis Melkonian, Wouter Swierstra, and Manuel M.T. Chakravarty

Validity. There are still invariants of a well-formed ledger
that are not captured by the current typing as List Tx . To
remedy this, we encode the validity of a transaction with re-
spect to a given ledger as a dependent data type. For the sake
of brevity, we present only two such conditions, namely that
inputs refer to existing unspent outputs and all authoriza-
tions succeed:

record IsValidTx (tx :Tx) (l : List Tx) : Set where
field validOutputRefs :

∀i→ i ∈ ins tx→ outRef i ∈ utxo l
allInputsValidate :
∀i→ i ∈ ins tx→ authorize i l ≡ true

. . .

Other validity conditions include that no output is spent
twice (Unique (map outRef (ins tx))) and transactions pre-
serve total values (forge+∑ in ≡ fee+

∑
out).

It is nowpossible to characterize awell-formedLedдer , by
requiring a validity proof along with each insertion to the
list of transactions. Exposing only this type-safe interface to
the user will ensure one can only construct valid ledgers.

3 Meta-theory
Apart from being able to define correct-by-construction
ledgers, we can prove further meta-theoretical results over
our existing formulation.

Weakening. Given a suitable injection on addresses, we
prove a weakening lemma, stating that a valid ledger
parametrized over some addresses will remain valid even
if more addresses become available:

weakening : (f :A ↪→ B)→ Ledдer l→ Ledдer (weaken f l)

Weakening consists of traversing the ledger’s outputs and
transporting all addresses via the supplied injection; in or-
der to keep references intact, the injection has to also pre-
serve the original hashes4.

Combining. Ideally, one would wish for a modular reason-
ing process, where it is possible to examine subsets of unre-
lated transactions in a compositional manner.
We provide a ledger combinator that interleaves two sepa-

rate ledgers. Due to lack of space, we eschew from giving the
formal definition of the separation connective _∗_≈_. Briefly,
two ledgers are separate if they do not share any common
transaction and the produced interleaving does not break
previous validator scripts (since they will now execute on
a different ledger state). These conditions are necessary to
transfer the validity of the two sub-ledgers to a proof of va-
lidity of the merged ledger:

↔ ⊣ : Ledдer l→ Ledдer l′ → l ∗ l′ ≈ l″→ Ledдer l″

4 A practical case of such weakening is migrating from a 32-bit word ad-
dress space to a 64-bit one.

The notion of weakening we previously defined proves
rather useful here, as it allows merging two ledgers acting
on different addresses.

4 Discussion
Proof Automation. Although we have made it possible to
express desired ledger properties in the type system, users
still need to manually discharge tedious proof obligations.
In order to make the proof process more ergonomic, we
can prove that the involved propositions are decidable, thus
defining a decision procedure for closed formulas that do
not contain any free variables [12]; we have already proven
decidability of the validity conditions5 and wish to also
cover the propositions appearing in weakening and combin-
ing.

Comparison with Ethereum. It would be interesting to
conduct a more formal comparison between UTxO-based
and account-based ledgers, relying on previous work on
chimeric ledgers [14] that gives a translation between these
two approaches. Note that implementing this translation on
our inherently-typed representation would guarantee that
we only produce valid UTxO ledgers.

Towards verification of smart contracts. Although our
framework gives a formal foundation for UTxO-based
ledgers, reasoning about the high-level behaviour of smart
contracts is still out of reach. The quest for a mathemati-
cal model that captures the subtleties of contract behaviour
and is amendable to mechanized verification is still an open
problem, but there seems to be a consensus that formal
methods lead to the most promising direction [8].
Scilla, an intermediate-level language for smart con-

tracts, has a formal semantics based on communicating au-
tomata that has proven adequate to mechanically verify
safety and liveness properties [11].
The Bitcoin Modelling Language (BitML), an idealistic

process calculus for Bitcoin contracts, is accompanied by
a small-step reduction semantics and a symbolic model of
participant strategies that is intuitive to work with [4]. The
authors also provide a compiler from high-level BitML con-
tracts to low-level Bitcoin transactions, along with a com-
pilation correctness theorem: computational attacks on com-
piled contracts are also observable in the symbolic model. We
are, in fact, currently formalizing the BitML calculus and its
symbolic model in Agda6 and plan to mechanize compila-
tion down to our formal UTxO model instead.

Acknowledgments
We would like to thank Philip Wadler and Michael Peyton
Jones for helpful discussion and IOHK for financial support.
5 There is an example construction of a valid ledger in the code repository,
where our decision procedure automatically discharges all required proofs.
6https://github.com/omelkonian/formal-bitml

 https://github.com/omelkonian/formal-bitml

Formal Investigation of the Extended UTxO Model (Extended Abstract) TyDe’19, August 18, 2019, Berlin, Germany

References
[1] 2019. The Extended UTxO Model. Retrieved 5/2019

from https://github.com/input-output-hk/plutus/blob/master/docs/
extended-utxo/README.md

[2] 2019. Multi-Currency. Retrieved 5/2019 from https://github.
com/input-output-hk/plutus/blob/master/docs/multi-currency/
multi-currency.md

[3] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Lukasz Mazurek. 2014. Secure multiparty computations on bitcoin. In
Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 443–458.

[4] Massimo Bartoletti and Roberto Zunino. 2018. BitML: a calculus for
Bitcoin smart contracts. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, 83–100.

[5] Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to design
fair protocols. In International Cryptology Conference. Springer, 421–
439.

[6] Vitalik Buterin et al. 2014. A next-generation smart contract and de-
centralized application platform. white paper (2014).

[7] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs that
yield nothing but their validity or all languages in NP have zero-
knowledge proof systems. Journal of the ACM (JACM) 38, 3 (1991),
690–728.

[8] Andrew Miller, Zhicheng Cai, and Somesh Jha. 2018. Smart contracts
and opportunities for formal methods. In International Symposium on
Leveraging Applications of Formal Methods. Springer, 280–299.

[9] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-
tem. (2008).

[10] Ulf Norell. 2008. Dependently typed programming in Agda. In Inter-
national School on Advanced Functional Programming. Springer, 230–
266.

[11] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: a Smart
Contract Intermediate-Level LAnguage. CoRR abs/1801.00687 (2018).
arXiv:1801.00687 http://arxiv.org/abs/1801.00687

[12] Paul Van Der Walt and Wouter Swierstra. 2012. Engineering proof by
reflection in Agda. In Symposium on Implementation and Application
of Functional Languages. Springer, 157–173.

[13] Joachim Zahnentferner. 2018. An Abstract Model of UTxO-based
Cryptocurrencies with Scripts. IACR Cryptology ePrint Archive 2018
(2018), 469.

[14] Joachim Zahnentferner. 2018. Chimeric Ledgers: Translating and Uni-
fying UTXO-based and Account-based Cryptocurrencies. IACR Cryp-
tology ePrint Archive 2018 (2018), 262.

https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md
https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md
https://github.com/input-output-hk/plutus/blob/master/docs/multi-currency/multi-currency.md
https://github.com/input-output-hk/plutus/blob/master/docs/multi-currency/multi-currency.md
https://github.com/input-output-hk/plutus/blob/master/docs/multi-currency/multi-currency.md
http://arxiv.org/abs/1801.00687
http://arxiv.org/abs/1801.00687

	1 Introduction
	2 Formal Model
	3 Meta-theory
	4 Discussion
	Acknowledgments
	References

