
Syntax with Shifted Names

Stephen Dolan
OCaml Labs, University of Cambridge

Leo White
Jane Street Europe

Abstract
We propose shifted names, a new representation for
names and binding. Like representations with explicit
names, we can use distinct names for different things
and not worry about reordering them, but like de Bruijn
indices we have no need for freshness side-conditions.

1 Introduction
Representing and reasoning about syntax containing
variable bindings is a longstanding source of frustra-
tion. When writing code that operates on, say, terms
of lambda calculus, it is far too easy to write an in-
correct substitution function that accidentally captures
variables. If you do manage to write a correct one, it is
far too hard to convince a proof assistant of the fact.

The literature contains a wealth of approaches to this
problem, including direct representations of names as
strings or de Bruijn indices, first-order representations
that distinguish free and bound variables (the locally
named representation of McKinna and Pollack [4], or the
locally nameless representation (see e.g. Charguéraud [2]),
higher-order representations that re-use metalanguage
binding [5], and approaches based on nominal sets [6, 7].

Our interest in this problem stems from work on type
systems for algebraic effects. These systems allow de-
tailed static tracking of the type of effects that code may
perform, as well as the type of its result. For instance,
an expression 𝑒 that returns an integer (after asking the
environment for the name of a configuration file and
reading it) might be given the following type:

⊢ 𝑒 : Int[Reader Filename, FileIO]

A central advantage of algebraic effects is that the row of
effects above is unordered : the row is grown by perform-
ing other effectful operations and shrunk by handling
them, but it is not necessary to handle effects in exactly
the order that the type lists them.

But what happens if the row contains two effects with
the same name? This can happen because of a recursive
function, because the programmer used the same name
for two effects, or for myriad other reasons. Suddenly, the
problems of disjointness, freshness and capture-avoiding
substitution reappear.
Our original idea was that we would borrow some

machinery from the literature on binding representa-
tions to help deal with algebraic effects. However, what’s

TyDE’19, August 18, 2019, Berlin, Germany

2019.

happened so far is the opposite: an idea borrowed from
algebraic effects turns out to help deal with binding. This
talk is about that idea, shifted names, and how it helps
clarify and simplify the locally nameless representation.

1.1 Shifted Names

Leijen’s language Koka [3] introduced a novel way of
dealing with multiple copies of an effect appearing si-
multaneously, which was developed further by Biernacki
et al. [1]. In a row of effects such as:

[Reader Filename, FileIO, Reader Filename]

the effects with distinct names can be freely reordered,
but the order matters for effects with the same name.
References to Reader Filename refer to the rightmost
occurrence, but shadowed occurrences can be referenced
by repeatedly applying an operation known variously as
inject, lift or shift. In essence, de Bruijn indices are used
to disambiguate between effects with the same name.
Here, we adapt this idea for reasoning about syntax

with binding: our names 𝑥, 𝑦, 𝑧 are of the form foo3,
consisting of a pair of a label (here foo) and an index
(here 3). We use the indices as de Bruijn indices, to
resolve collisions between names with the same label.

2 Locally Nameless and Shifted Names
The locally nameless representation draws a distinction
between free variables (represented as names) and bound
variables (represented as numbers). Terms of the untyped
lambda calculus are represented as follows, with natural
numbers 𝑛 representing bound variables:

𝑡, 𝑢 ::= 𝑥 | 𝑛 | 𝑡 𝑢 | 𝜆 𝑡

Note that 𝜆 𝑡 does not specify the name of the bound
variable: bound variables are numbered in sequence, de
Bruijn-style. Compared to the locally named representa-
tion [4] (using names for both free and bound variables),
this choice makes 𝛼-equivalence trivial.
There are two fundamental operations: open𝑥 turns

bound variables referring to the outermost binder into
the free variable 𝑥, while close𝑥 turns the free variable 𝑥
into a reference to the outermost binder.
We think of these operations as moving a cursor

around a term: open𝑥 moves the cursor underneath 𝜆,
giving the name 𝑥 to the bound variable, while close𝑥
moves the cursor back out, binding occurrences of 𝑥.
Our versions of open𝑥 and close𝑥 have a more sub-

tle definition, adjusting indices to avoid causing name

1

TyDE’19, August 18, 2019, Berlin, Germany Stephen Dolan and Leo White

collisions. For instance:

openfoo2 (foo2 0) = foo3 foo2

openfoo2 (foo3 1) = foo4 0

The index in the free variable foo2 was incremented,
to avoid confusing it with the newly-opened foo2. This
adjustment is undone by close𝑥, giving us the following
useful properties:

open𝑥 ∘ close𝑥 = id

close𝑥 ∘ open𝑥 = id

These equations also appeared in Charguéraud’s pre-
sentation of the locally nameless representation [2], but
required technical side-conditions of freshness and local
closure. Our versions of open𝑥 and close𝑥 do not cause
name collisions, and so do not need these side-conditions.

2.1 Inserting and removing binders

As well as open𝑥 and close𝑥 to move the cursor into and
out of a binder, we have two operations wk and bind𝑢 to
add and remove bound variables.

The operation wk adds an unused bound variable, so
that 𝜆 (wk 𝑡) is a constant function returning 𝑡. Dually,
bind𝑢 removes a bound variable by replacing its occur-
rences with 𝑢. For instance, the 𝛽-reduction rule can
then be written:

(𝜆 𝑡)𝑢 −→ bind𝑢 𝑡

We have an equation relating these operations:

bind𝑢 ∘ wk = id

In the standard presentation of the locally nameless
representation, these operations are not explicit. Usually,
wk is entirely implicit, and bind is conflated with open.
With shifted names, they are distinct: bind𝑥 𝑡 and open𝑥 𝑡
are not in general equal, as open𝑥 𝑡 adjusts indices to
ensure free variables of 𝑡 do not collide with 𝑥, while
bind𝑥 does not. Indeed, this conflation of bind and open
is one of the main reasons that freshness side-conditions
are needed in the standard presentation.

3 Renaming, substitution and shifting
The operations wk and close𝑥 introduce a bound variable,
while bind𝑢 and open𝑥 remove one. This gives us three
derived operations which introduce and then remove a
bound variable (the fourth possibility, bind𝑢 ∘ wk, is the
identity):

⟨𝑦/𝑥⟩ = open𝑦 ∘ close𝑥 (renaming)

[𝑢/𝑥] = bind𝑢 ∘ close𝑥 (substitution)

S𝑥 = open𝑥 ∘ wk (shifting)

Several properties of these operations are immediate
consequences of the three equations of section 2:

⟨𝑥/𝑥⟩ = id

⟨𝑥/𝑦⟩ ∘ ⟨𝑦/𝑧⟩ = ⟨𝑥/𝑧⟩
⟨𝑥/𝑦⟩ ∘ ⟨𝑦/𝑥⟩ = id

[𝑢/𝑥] ∘ ⟨𝑥/𝑦⟩ = [𝑢/𝑦]

[𝑢/𝑥] ∘ S𝑥 = id

S𝑥 ∘ ⟨𝑥/𝑦⟩ = S𝑦

Again, note the lack of freshness conditions here.
The S𝑥 operation is particularly useful for eliding

freshness conditions. In our notation, the statement of
Barendregt’s substitution lemma is, for variables 𝑥, 𝑦
with distinct labels:

[𝑡/𝑥] ∘ [𝑢/𝑦] = [[𝑡/𝑥]𝑢 / 𝑦] ∘ [S𝑦 𝑡/𝑥]

Note that we do not need Barendregt’s side-condition
that 𝑦 does not appear free in 𝑡. Instead, we can use S𝑦 𝑡,
relying on the property that [𝑢/𝑦]S𝑦 𝑡 = 𝑡.

3.1 Parallel operations

The operations of renaming, substitution and shifting
above operate on only a single variable at a time. By
composing longer sequences of open𝑥, close𝑥, wk and
bind𝑢, we can operate on multiple variables in parallel.
We define a weakening 𝜌 as a mixture of renaming and
shifting, and a substitution 𝜂 as a mixture of renaming
and substitution:

𝜌 = id | open𝑥 ∘ 𝜌 ∘ close𝑦 | open𝑥 ∘ 𝜌 ∘ wk
𝜂 = id | open𝑥 ∘ 𝜂 ∘ close𝑦 | bind𝑢 ∘ 𝜂 ∘ close𝑥

As consequences of the equations above, we have several
useful properties of weakenings and substitutions. For
instance, for every weakening 𝜌 there is a substitution
𝜌* such that 𝜌* ∘ 𝜌 = id, and for every substitution 𝜂
there is a weakening 𝜂* such that 𝜂 ∘ 𝜂* = id.

4 Discussion
Shifted names make it possible to represent and reason
about syntax with binding without needing to reason
about arithmetic (as with de Bruijn representations)
or have freshness side-conditions (as with named repre-
sentations). We try to use distinct names for distinct
things, but if collisions do arise they are resolved with
numbering.

Acknowledgements Thanks to James McKinna for
enlightening discussion.

References
[1] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip

Sieczkowski. 2018. Handle with Care: Relational Interpretation

2

Syntax with Shifted Names TyDE’19, August 18, 2019, Berlin, Germany

of Algebraic Effects and Handlers. POPL ’18 2, POPL, Article
8 (Dec. 2018), 30 pages. https://doi.org/10.1145/3158096

[2] Arthur Charguéraud. 2012. The locally nameless representation.

Journal of automated reasoning 49, 3 (2012), 363–408.
[3] Daan Leijen. 2014. Koka: Programming with row polymorphic

effect types. arXiv preprint arXiv:1406.2061 (2014).
[4] James McKinna and Robert Pollack. 1993. Pure type systems

formalized. In International Conference on Typed Lambda

Calculi and Applications. Springer, 289–305.
[5] Frank Pfenning and Conal Elliott. 1988. Higher-order Abstract

Syntax. In Proceedings of the ACM SIGPLAN 1988 Conference

on Programming Language Design and Implementation (PLDI
’88). ACM, 199–208. https://doi.org/10.1145/53990.54010

[6] Andrew M. Pitts. 2003. Nominal logic, a first order theory

of names and binding. Information and Computation 186, 2
(2003), 165 – 193. https://doi.org/10.1016/S0890-5401(03)
00138-X Theoretical Aspects of Computer Software (TACS

2001).
[7] Christian Urban. 2008. Nominal techniques in Isabelle/HOL.

Journal of Automated Reasoning 40, 4 (2008), 327–356.

3

https://doi.org/10.1145/3158096
https://doi.org/10.1145/53990.54010
https://doi.org/10.1016/S0890-5401(03)00138-X
https://doi.org/10.1016/S0890-5401(03)00138-X

	Abstract
	1 Introduction
	1.1 Shifted Names

	2 Locally Nameless and Shifted Names
	2.1 Inserting and removing binders

	3 Renaming, substitution and shifting
	3.1 Parallel operations

	4 Discussion
	References

