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Abstract
Text editing is powerful, but entering text is often not the
most natural way to construct certain types of expressions,
such as those encoding colors, animations, musical sequences,
tabular data, plots, widgets, graphs, and various other data
structures. We introduce live literals, or livelits, which allow
the programmer to fill holes of such types by directly manip-
ulating a graphical user interface. Livelits are compositional:
this GUI can itself contain typed holes that the programmer
can fill with expressions that might contain other livelits.
Livelits are also live: they can provide immediate feedback
about the dynamic implications of the programmer’s choices,
even when the subexpressions mention bound variables, be-
cause the livelit is given access to closures associated with
the hole that the livelit is tasked with filling. We are imple-
menting livelits within Hazel, a live functional programming
environment that assigns meaning to every edit state.

1 Introduction
In the popular imagination, programmers spend their days
interacting with screens full of text. Text editors are indeed
flexible and powerful user interfaces. However, textual user
interfaces are not the best tool for every job. In particular,
there exist many data structures for which a non-textual
user interface might be more natural.

For example, consider a record type encoding colors:
type color = { r: Int , g: Int , b: Int };

It is possible to construct a particular color by writing out
its textual representation. The problem is that this sort of
textual user interface for color selection provides no feed-
back and limited affordances. In other words, it is difficult
for the programmer, or the reader, to know which color is
represented and to interactively explore the space around it
if a slightly different color is desired.

Color selectors in graphical end-user applications, in con-
trast, provide live feedback (by displaying the selected color)
and richer affordances of various designs (e.g. they might
present swatches or a spectrum of colors arranged in two
dimensions, which the user can explore using the mouse).
The trade-off, of course, is that these applications have

limited or no support for abstraction and composition. It is

difficult to, for example, assign a color to a variable for use
in multiple places, or to darken a color by passing it to a
function, or to compute the value of, for example, the red
component of a color, or to use a slider to manipulate its
value when one has not already been provided.

We believe that it is possible to resolve this apparent ten-
sion between direct and programmatic manipulation, i.e. to
design a programming system that provides the rich feed-
back and affordances of graphical end-user applications in
situations where they are useful, while supporting the full
array of abstraction and composition mechanisms available
in modern general-purpose programming languages.

The basic idea, introduced in the priorwork on theGraphite
system for Java [Omar et al. 2012], is simple: we allow library
providers to associate graphical user interfaces with types.
The programming environment provides the programmer
with the option, via the code completion menu, to activate
the associated GUI wherever an expression of the corre-
sponding type is needed, i.e. wherever there is a hole of such
a type in the program. It is the GUI’s job to fill the hole, i.e.
to generate an appropriate expression of the needed type.
Figure 1, reproduced from our prior work, demonstrates an
example of a simple color chooser.

There are two major limitations with this prior work. First,
GUIs in Graphite are ephemeral, i.e. they disappear once the
initial interaction is complete, leaving behind only the textual
representation. This means that feedback and assistance is
available only to the programmer that first writes the code.

Second, Graphite does not provide any compositional way
to enter subexpressions within the GUI. This implies that
Graphite’s GUIs can only generate closed expressions. For
example, in Figure 1, there is no way to specify that the R, G,
or B values of the color being entered should be computed
by a specified expression—only closed colors are supported.

2 Livelits
To address these limitations, we introduce live literals, or
livelits. Figure 2 shows a mockup of the definition and appli-
cation of a livelit named $grade_cutoffs for adjusting grade
cutoffs, represented as values of record type grade_cutoffs.
Like textual literal forms (e.g. list literals), livelits are alter-
native representations of expressions of the associated type
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Figure 1. This figure, reproduced from the prior work [Omar et al. 2012], shows (a) a simple example GUI associated with the
Color type, and (b) the code generated by this GUI once the ephemeral interaction is complete.

Figure 2. A mockup of a livelit for adjusting grade cutoffs. Livelits are persistent and can access the live environment.

[Omar and Aldrich 2018]. We are implementing livelits in
Hazel (hazel.org), a live functional programming environ-
ment with support for typed holes [Omar et al. 2017]. We
plan to perform a live demo.
The definition of the livelit, outlined in Figure 2, follows

the Elm architecture, i.e. there are types representing the
abstract model and the messages that the GUI generates.
Livelits are persistent rather than ephemeral, i.e. the model
is recorded in the underlying syntax tree. The view function
generates the GUI, implemented using HTML, on demand
(so the view is not persisted). Another function, to_exp, is
responsible for generating the underlying expression, called
the expansion, from the model. While other projectional edi-
tors, e.g. those generated by Citrus [Ko and Myers 2005], also
support persistent GUIs in code, they are not user-extensible.

The GUI can itself contain typed holes, represented by the
HtmlHole constructor. In this case, there is a single hole for
entering an expression of type list(float), i.e. the list of
weighted averages. In this example, the user has filled this

hole with a variable, weighted_averages (the definition of
which precedes the content of this figure and is not shown).
In other words, livelits support open expressions and there-
fore interact cleanly with standard abstraction mechanisms,
i.e. they can appear under binders. We follow the reasoning
principles for literals with spliced sub-expressions estab-
lished by Omar and Aldrich [2018].
The main complication when dealing with open expres-

sions relates to how live feedback is to be generated. Given
just the symbolic expression in the hole, it would be impos-
sible to plot (as orange dots) the actual data from the list
that the variable refers to. To resolve this issue, the system
evaluates the program as if it the livelits were empty holes,
relying on the support for evaluating incomplete programs
described recently by Omar et al. [2019]. The result of eval-
uation is an expression containing hole closures, i.e. holes
equipped with environments. The livelit can then evaluate
the expression in the hole against the closure selected by the
user (not shown) using Env.run.

hazel.org
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