
An Algebra of Sequential Decision Problems
Extended Abstract

Robert Krook
Computer Science and Engineering

University of Gothenburg
Sweden

guskrooro@student.gu.se

Patrik Jansson
Computer Science and Engineering
Chalmers University of Technology

Sweden
patrik.jansson@chalmers.se

ACM Reference Format:
Robert Krook and Patrik Jansson. 2019. An Algebra of Sequential
Decision Problems: Extended Abstract. In Proceedings of ACM SIG-
PLAN Workshop on Type-Driven Development (TyDe’19). ACM, New
York, NY, USA, 3 pages.

1 Introduction
Sequential decision processes and problems are a well estab-
lished concept in decision theory, with the Bellman equation
[1] as a popular choice for describing them. Botta et al [4]
have formalised the notion of such problems in Idris. Using
dependent types to bridge the gap between description and
implementation of complex systems, for purposes of simu-
lation, has been shown to be a good choice [5]. They have
illustrated how to use their formulation to model e.g. climate
impact research [3], a very relevant problem today.

Evidence based policy making (when dealing with climate
change or other global systems challenges), requires com-
puting policies which are verified to be correct. There are
several possible notions of “correctness” for a policy: com-
puting feasible system trajectories through a state space,
avoiding “bad” states, or even computing optimal policys.
The concepts of feasibility and avoidability have been for-
malised and presented in Botta et al. [2].
Although motivated by the complexity of modelling in

climate impact research, we focus on simpler examples of
sequential decision processes and how to combine them.

Examples: Assume that we have a process p : SDProc that
models something moving through a 1-D coordinate system
with a natural number as the state and +1, 0, and −1 as
actions. If the circumstances change and we need to model
how something moves in a 2-D coordinate system, it would
be convenient if we could reuse the one dimensional system
and get the desired system for free. We seek a combinator
_×SDP_ : SDProc → SDProc → SDProc such that

p2 = p ×SDP p

Both p and p2 use a fixed state space, but we can also handle
time dependent processes. Assume p′ : SDProcT is sim-
ilar to p but time dependent: not all states are available
at all times, meaning p′ is more restricted in the moves

TyDe’19, August 18, 2019, Berlin, Germany
2019.

it can make. If we want to turn this into a process that
can also move around in a second dimension, we want to
be able to reuse both p′ and p. We can use a combinator
_×TSDP_ : SDProcT → SDProcT → SDProcT together with
the trivial embedding of a time independent, as a time de-
pendent, process embed : SDProc → SDProcT .

p2 ′ = p′ ×TSDP (embed p)

As a last example consider the case where we want a pro-
cess that moves either in a 3-D coordinate system p3 =
p2 ×SDP p or in p2 ′. You could think of this as choos-
ing a map in a game. Then we would want a combinator
_⊎TSDP_ : SDProcT → SDProcT → SDProcT such that

game = p2 ′ ⊎TSDP (embed p3)

These combinators, and more, make up an Algebra of SDPs.

2 Sequential Decision Problems
First, we formalise the notion of a Sequential Decision Process
in Agda. A process always has a state, and depending onwhat
that state is there are different controls that describe what
actions are possible in that state. The last component of
a sequential decision process is a function step that when
applied to a state and a control for that state returns the next
state. To better see the type structure we introduce a type
synonym for the family of controls depending on a state:

Con : Set → Set1
Con S = S → Set

and for the the type of step functions defined in terms of a
state and a family of controls on that state:

Step : (S : Set) → Con S → Set
Step S C = (s : S) → C s → S

With these in place we define a record type for SDPs:

record SDProc : Set1 where
constructor SDP
field State : Set

Control : Con State
step : Step State Control

We can extend this idea of a sequential decision process to
that of a problem by adding an additional field reward.

reward : (x : State) → Control x → Val



TyDe’19, August 18, 2019, Berlin, Germany Robert Krook and Patrik Jansson

where Val is often R. From the type we conclude that the
reward puts a value on the steps taken by the step func-
tion, based on the state transition and the control used. The
problem becomes that of finding the sequence of controls
that produces the highest sum of rewards. Or, in more real-
istic settings with uncertainty (which can be modelled by a
monadic step function), finding a sequence of policies which
maximises the expected reward. The system presented here
aims at describing finite horizon problems, meaning that the
sum of rewards is over a finite list. Furthermore, rewards
are usually discounted the as time passes. One action now
is worth more than the same action a few steps later. Re-
wards, and problems, are not the focus of this abstract but
are mentioned for completeness.

A policy is a function from states to controls:

Policy : (S : Set) → Con S → Set
Policy S C = (s : S) → C s

Given a list of policies to apply, one for each time step, we
can compute the trajectory of a process from a starting state.
Here the #st and #sf functions extract the state and step com-
ponent from the SDProc respectively.

trajectory : {n : N} → (p : SDProc)
→ Vec (Policy (#st p) (#c p)) n
→ #st p → Vec (#st p) n

trajectory sys [] x0 = []

trajectory sys (p :: ps) x0 = x1 :: trajectory sys ps x1
where x1 : #st sys

x1 = (#sf sys) x0 (p x0)

As an example of a trajectory computation we return to the
one dimensional process 1d-sys (called just p in the intro)
and an example policy sequence pseq. Ideally pseq is the re-
sult of an optimization computed using Bellmans backwards
induction. Here we just illustrate one trajectory:

pseq = tryleft :: tryleft :: right :: stay :: right :: []
test1 : trajectory 1d-sys pseq 0 ≡ 0 :: 0 :: 1 :: 1 :: 2 :: []
test1 = refl

In an applied setting many trajectories would be computed
to explore the system behaviour. This brief example is fully
presented in an accompanying technical report [6].

In this abstract we focus on non-monadic, time-independent,
sequential decision processes, but the algebra extends nicely
to the more general case.

3 The Product Combinator
To compute p2 we need to define a product combinator for
SDPs. We illustrate what this combinator does in Figure 1.
The state of the product of two processes is the cartesian
product of the two separate states.
Given two control families, we can compute the control

family for pairs of states. The inhabitants (the controls) of

Figure 1. The product process holds components of both
states and applies the step function to both components
simultaneously. Each component of the next state has two
incoming arrows as the policy that computes the control that
is used has access to both components of the previous state.

each family member are pairs of controls for the two state
components.

_×C_ : {S1 S2 : Set } →

Con S1 → Con S2 → Con (S1 × S2)
(C1 ×C C2) (s1 , s2) = C1 s1 × C2 s2
Given two step functions we can define a new step function
for the product process by returning the pair computed by
applying the individual step functions to the corresponding
components of the input.

_×sf _ : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }
→ Step S1 C1 → Step S2 C2

→ Step (S1 × S2) (C1 ×C C2)

(sf1 ×sf sf2) (s1 , s2) (c1 , c2) = (sf1 s1 c1 , sf2 s2 c2)

Finally, we can compute the product of two sequential deci-
sion processes by applying the combinators componentwise.

_×SDP_ : SDProc → SDProc → SDProc
(SDP S1 C1 sf1) ×SDP (SDP S2 C2 sf2)
= SDP (S1 × S2) (C1 ×C C2) (sf1 ×sf sf2)

To illustrate how the combinator works we apply it to the
system (1d-sys) mentioned previously.

2d-system = 1d-sys ×SDP 1d-sys

Now 2d-system is a process of two dimensions rather than
one, as illustrated by the type of test2.

2d-pseq = zipWith _×P_ pseq pseq
test2 : trajectory 2d-system 2d-pseq (0 , 5)

≡ (0 , 4) :: (0 , 3) :: (1 , 4) :: (1 , 4) :: (2 , 5) :: []
test2 = refl

4 Wrapping up
In the technical report [6] we present more combinators
for time dependent and time independent processes and
policies. We implement the example of a coordinate system
described above, and make it even more precise as a time
dependent process. Future work includes generalising to
monadic SDPs and applying our combinators to the green
house gas emission problem [3].

We thank the anonymous reviewers for their helpful com-
ments and the Agda developers for a great tool!



An Algebra of Sequential Decision Problems TyDe’19, August 18, 2019, Berlin, Germany

References
[1] Richard Bellman. 1957. Dynamic Programming. Princeton University

Press.
[2] Nicola Botta, Patrik Jansson, and Cezar Ionescu. 2017. Contributions

to a computational theory of policy advice and avoidability. Journal
of Functional Programming 27 (2017), 1–52. https://doi.org/10.1017/
S0956796817000156

[3] N. Botta, P. Jansson, and C. Ionescu. 2018. The impact of uncertainty on
optimal emission policies. Earth System Dynamics 9, 2 (2018), 525–542.
https://doi.org/10.5194/esd-9-525-2018

[4] Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of Func-
tional Programming 23, 05 (2013), 552–593. https://doi.org/10.1017/
S095679681300018X

[5] Cezar Ionescu and Patrik Jansson. 2013. Dependently-typed program-
ming in scientific computing: Examples from economic modelling. In
24th Symposium on Implementation and Application of Functional Lan-
guages (IFL 2012) (LNCS), Ralf Hinze (Ed.), Vol. 8241. Springer, 140–156.
https://doi.org/10.1007/978-3-642-41582-1_9

[6] Robert Krook and Patrik Jansson. 2019. An Algebra of Sequential Deci-
sion Problems. Technical Report. Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg,
Sweden. http://www.cse.chalmers.se/~patrikj/papers/AlgSDP_Krook_
Jansson_2019_TechReport.pdf.

https://doi.org/10.1017/S0956796817000156
https://doi.org/10.1017/S0956796817000156
https://doi.org/10.5194/esd-9-525-2018
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-642-41582-1_9
http://www.cse.chalmers.se/~patrikj/papers/AlgSDP_Krook_Jansson_2019_TechReport.pdf
http://www.cse.chalmers.se/~patrikj/papers/AlgSDP_Krook_Jansson_2019_TechReport.pdf

	1 Introduction
	2 Sequential Decision Problems
	3 The Product Combinator
	4 Wrapping up
	References

