
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

FreezeML
Complete and Easy Type Inference for First-Class Polymorphism

Frank Emrich
The University of Edinburgh

frank.emrich@ed.ac.uk

Sam Lindley
The University of Edinburgh
Imperial College London
sam.lindley@ed.ac.uk

Jan Stolarek
The University of Edinburgh
Lodz University of Technology

jan.stolarek@ed.ac.uk

James Cheney
The University of Edinburgh
The Alan Turing Institute
jcheney@inf.ed.ac.uk

Abstract
ML is remarkable in providing statically typed polymorphism
without the programmer ever having to write any type anno-
tations. The cost of this parsimony is that the programmer is
limited to a form of polymorphism in which quantifiers can
occur only at the outermost level of a type and type variables
can be instantiated only with monomorphic types.
The general problem of type inference for unrestricted

System F-style polymorphism is undecidable in general. Nev-
ertheless, the literature abounds with a range of proposals
to bridge the gap between ML and System F by augmenting
ML with type annotations or other features.

We present a new proposal, with different goals to much
of the existing literature. Our aim is to design a minimal
extension to ML to support first-class polymorphism. We
err on the side of explicitness over parsimony, extending
ML with two new features. First, λ- and let-bindings may be
annotated with arbitrary System F types. Second, variable
occurrences may be frozen, explicitly disabling instantiation.
The resulting language is not always as concise as more
sophisticated systems, but in practice it does not appear to
require a great deal more ink. FreezeML is a conservative
extension of ML, equipped with type-preserving translations
back and forth between System F. It admits a type inference
algorithm, a mild extension of algorithm W, that is sound
and complete and which yields principal types.

1 ML Magic
Consider the ML program: let f = λx y.(x ,y) in f 42 True.
Hindley-Milner type inference [6, 12] relies on two pieces of
implicit magic.

1. Generalisation, that is, saturating type abstraction, which
only happens at let-bindings.
(f has type ∀a b .a → b → a × b)

2. Instantiation, that is, saturating type application, which
only happens on variables.
(f is invoked with [a 7→ Int, b 7→ Bool])

These two features hide the boilerplate of languages with
explicit first-class polymorphism like System F [4, 5].

2 The Perils of Instantiation
Whilst some argue that let-bound variables should not be
generalised implicitly [18], instantiation is the bigger obsta-
cle to type inference for first-class polymorphism because
it throws away type information. In ML, because polymor-
phismmay only occur at the top-level, variables must always
be instantiated right away. Nothing is lost in instantiating
eagerly, providing it happens at the correct types. As type
variables can be instantiated only with monomorphic types,
these can be inferred just by inspecting the program text.

Consider the following two functions.

id : ∀a.a → a
idx = x

single : ∀a.a → List a
singlex = [x]

In ML the term single id can be assigned the type List (T →
T) for any monomorphic typeT ; once let-bound to a variable,
we may then generalise to ∀a.List (a → a). In a system with
first-class polymorphism one might wish to suppress instan-
tiation of id, instead yielding List (∀a.a → a). The quandary
of type inference with first-class polymorphism is that both
∀a.List (a → a) and List (∀a.a → a) are fully general, and
neither is an instance of the other. In fact, type inference, and
indeed type checking, is undecidable for System F [21] with-
out type annotations. Moreover, even in System F with type
annotations, but no explicit instantiation, type inference re-
mains undecidable [14]. As a consequence, the programmer
must provide at least a modicum of explicit type information.

3 Prior Work
There is a plethora of work on bridging the gap between ML
and System F: some systems stratify the type system, hiding
polymorphism inside nominal types [7, 8, 13, 15]; others add
features to the type system [9, 11, 16]; and others strive to
stay within the System F type system whilst minimising the
number of type annotations [2, 10, 17, 19, 20].

4 Freezing Variable Instantiation
Our proposal is modest. Having accepted that the program-
mer must provide explicit type annotations as a prerequisite,

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA Frank Emrich, Sam Lindley, Jan Stolarek, and James Cheney

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

we propose a system FreezeML in which the programmer can
furthermore explicitly choose whether or not to instantiate
a variable. For backwards compatibility with ML, the default
is to instantiate. For instance the term single id has type
List (a → a) (as in ML). On the other hand, the programmer
can instead elect to suppress instantiation. For instance, the
term single ⌈id⌉ has type List (∀a.a → a). The use of id has
been frozen. The freeze operator ⌈−⌉ may only be applied to
variables. It has the effect of suppressing instantiation.

FreezeML extends ML with ⌈−⌉ and explicit type anno-
tations on λ- and let-bindings. These extensions suffice to
express all of System F. There exist compositional type-
preserving translations back and forth between System F
and FreezeML. Moreover, there exists a sound and complete
type inference algorithm for FreezeML, a mild extension of
algorithm W [1], that infers principal types.

5 λ-Bound Variables
Unlike in ML we can write lambda abstractions that use their
arguments polymorphically.

poly = λ(f : ∀a.a → a).(f 42, f True)

To avoid the “swamp” [17] of undecidability and to keep
type inference compositional, we insist that unannotated
λ-bound variables be monomorphic. If we were to remove
the annotation from poly then in order to infer a type for f
we would have to inspect all uses together. One might hope
that even if we disallow such examples that rely on global
reasoning, it might still be safe to infer polymorphism when
it can be done locally. Consider the following two functions.

bad1 = λf .(poly ⌈f ⌉, (f 42) + 1)
bad2 = λf .((f 42) + 1, poly ⌈f ⌉)

Assume type inference proceeds from left to right. In bad1we
first infer that f has type ∀a.a → a (as ⌈f ⌉ is the argument
to poly); then we may instantiate a to Int when applying f
to 42. In bad2 we eagerly infer that f has type Int → Int;
now when we pass ⌈f ⌉ to poly, type inference fails. To rule
out this kind of sensitivity to the order of type inference, we
insist that unannotated λ-bound variables be monomorphic.

6 Explicit Generalisation
The freeze operator supports named polymorphic arguments.

let f = λx .x in poly ⌈f ⌉

With an explicit generalisation operator $ we can write:

poly $(λx .x)

Explicit generalisation is macro-expressible [3] in FreezeML.

$V ≡ let x = V in ⌈x⌉

We can also define a type-annotated variant:

$AV ≡ let (x : A) = V in ⌈x⌉

We elect to restrict generalisation to syntactic values; this
value restriction [22] is inessential.

7 Explicit Instantiation
Suppose head : ∀a.List a → a and ids : List (∀a.a → a). We
can instantiate a term by binding it to a variable.

let x = head ids in x 42
With an explicit instantiation operator @ we can write:

(head ids)@42
Explicit instantiation is macro-expressible in FreezeML.

M@ ≡ let x = M in x

8 Freezing Let Generalisation
It is natural to ask whether, as well as suppressing instantia-
tion of variables, it is also possible (or necessary) to suppress
let generalisation; after all System F does neither. We write
⌈let⌉ to denote a “frozen” let binding that does not perform
generalisation. This is not directly definable as (λx .N) M in
FreezeML, but we can macro-express frozen let as follows:

⌈let⌉ x = M in N ≡ let x = idM in N

9 Is FreezeML Reasonable?
To be usable as a programming language FreezeML must
support reasoning principles. We writeM ≃ N to meanM
is observationally equivalent to N . At a minimum we expect
β-rules to hold, and indeed they do; the twist is that they
involve substituting a different value depending on whether
the variable being substituted for is frozen or not.

let x = V in N ≃ N [$V / ⌈x⌉, V@ / x]
let (x : A) = V in N ≃ N [$AV / ⌈x⌉, V@ / x]
(λx .M)V ≃ M[V / ⌈x⌉, V / x]
(λ(x : A).M)V ≃ M[V / ⌈x⌉, V@ / x]

In ML, due to the value restriction, reduction can change
the type of a subterm, but not the type of a program. FreezeML
is more subtle. For instance:

let x = (λx .x) (λx .x) in ⌈x⌉ : a → a
let x = λx .x in ⌈x⌉ : ∀a.a → a

Thus:
M ≃ M ′ ≠⇒ let x = M in N ≃ let x = M ′ in N

However, this is what frozen let is good for, as:
M ≃ M ′ =⇒ ⌈let⌉ x = M in N ≃ ⌈let⌉ x = M ′ in N

Moreover, ifM is not a syntactic value, then:
let x = M in N ≃ ⌈let⌉ x = M in N

FreezeML is a convenient syntactic sugar for program-
ming System F. For reasoning (and defining a type-preserving
reduction semantics) it is preferable to think in terms of
$,@, ⌈−⌉, ⌈let⌉. If we annotate these operators appropriately
then we obtain exactly System F.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

FreezeML PL’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

References
[1] Luís Damas and Robin Milner. 1982. Principal Type-Schemes for

Functional Programs. In POPL. ACM Press, 207–212.
[2] Joshua Dunfield and Neelakantan R. Krishnaswami. 2013. Complete

and easy bidirectional typechecking for higher-rank polymorphism.
In ICFP. ACM, 429–442.

[3] Matthias Felleisen. 1991. On the Expressive Power of Programming
Languages. Sci. Comput. Program. 17, 1-3 (1991), 35–75.

[4] Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination de
coupures dans l’arithméticque d’ordre supérieur. Thèse de doctorat
d’état. U. Paris VII.

[5] Jean-Yves Girard, Yves Lafont, and Paul Taylor. 1989. Proofs and Types.
Cambridge University Press. http://www.paultaylor.eu/stable/Proofs&
Types.html

[6] J. Roger Hindley. 1969. The Principal Type-Scheme of an Object in
Combinatory Logic. Trans. Amer. Math. Soc 146 (1969), 29–60.

[7] Mark P. Jones. 1997. First-class Polymorphism with Type Inference.
In POPL. ACM Press, 483–496.

[8] Konstantin Läufer and Martin Odersky. 1994. Polymorphic Type In-
ference and Abstract Data Types. ACM Trans. Program. Lang. Syst. 16,
5 (1994), 1411–1430.

[9] Didier Le Botlan and Didier Rémy. 2003. MLF: raising ML to the power
of system F. In ICFP. ACM, 27–38.

[10] Daan Leijen. 2008. HMF: simple type inference for first-class polymor-
phism. In ICFP. ACM, 283–294.

[11] Daan Leijen. 2009. Flexible types: robust type inference for first-class
polymorphism. In POPL. ACM, 66–77.

[12] Robin Milner. 1978. A Theory of Type Polymorphism in Programming.
J. Comput. Syst. Sci. 17, 3 (1978), 348–375.

[13] Martin Odersky and Konstantin Läufer. 1996. Putting Type Annota-
tions to Work. In POPL. ACM Press, 54–67.

[14] Frank Pfenning. 1993. On the Undecidability of Partial Polymorphic
Type Reconstruction. Fundam. Inform. 19, 1/2 (1993), 185–199.

[15] Didier Rémy. 1994. Programming Objects with ML-ART, an Extension
to ML with Abstract and Record Types. In TACS (Lecture Notes in
Computer Science), Vol. 789. Springer, 321–346.

[16] Claudio V. Russo and Dimitrios Vytiniotis. 2009. QML: Explicit First-
class Polymorphism for ML. In ML. ACM, 3–14.

[17] Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon
Peyton Jones. 2018. Guarded impredicative polymorphism. In PLDI.
ACM, 783–796.

[18] Dimitrios Vytiniotis, Simon L. Peyton Jones, and Tom Schrijvers. 2010.
Let should not be generalized. In TLDI. ACM, 39–50.

[19] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
2006. Boxy types: inference for higher-rank types and impredicativity.
In ICFP. ACM, 251–262.

[20] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
2008. FPH: first-class polymorphism for Haskell. In ICFP. ACM, 295–
306.

[21] J. B. Wells. 1994. Typability and Type-Checking in the Second-Order
lambda-Calculus are Equivalent and Undecidable. In LICS. IEEE Com-
puter Society, 176–185.

[22] Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and
Symbolic Computation 8, 4 (1995), 343–355.

3

http://www.paultaylor.eu/stable/Proofs&Types.html
http://www.paultaylor.eu/stable/Proofs&Types.html

	Abstract
	1 ML Magic
	2 The Perils of Instantiation
	3 Prior Work
	4 Freezing Variable Instantiation
	5 -Bound Variables
	6 Explicit Generalisation
	7 Explicit Instantiation
	8 Freezing Let Generalisation
	9 Is FreezeML Reasonable?
	References

