
Monadic typed tactic programming by reflection∗

Liang-Ting Chen
Department of Computer Science

Swansea University
Swansea, Wales, United Kingdom
liang.ting.chen.tw@gmail.com

Abstract
We present a work in progress—a shallow embedding of a
typed tactic language Mtac using elaborator reflection in a
dependently typed language to allow users to write high-
level tactics within the same language. In contrast to the
original implementation of Mtac in Coq, this implementation
is completely written in Agda using its reflection mechanism.
To focus on the difference from its Coq counterpart, we give
an example of tactics and briefly sketch the implementation
of the core design and the pattern matching construct.

Keywords reflection, elaboration, tactics, meta-programming,
interactive theorem proving, agda, monads

1 Introduction
Mtac is a typed tactic programming language in Coq pro-
posed in [4, 10] to provide a high-level tactic programming
with static guarantees and to develop tactics interactively
within the Coq development environment. The idea is to en-
capsulate tactics in a monad ⃝ with a primitive run which
takes a term of type⃝τ , read as “maybe τ ”, to execute during
type inference. The execution will either produce a value of
type τ or an uncaught exception if it terminates.

In order to run tactics during type inference, their imple-
mentation is an extension partly written in OCaml changing
the infrastructure. It also relies specifically on impredicativ-
ity and typical ambiguity.
It is posed by Christiansen and Brady [1] that elaborator

reflection in Idris could be used to implement Mtac. To the
best of our knowledge, however, such implementation does
not exist yet.1
Idris’s reflection has inspired Ulf Norell to implement a

new reflection framework for Agda [8]. For a long time, Agda
as a proof assistant has lacked custom proof automation, but
it has a rich set of language features to support a succinct pro-
gramming style. Also, it seemed challenging to implement
Mtac due to the difference on the universe design. Hence,
Agda is chosen to implement Mtac as an interesting case
study of elaborator reflection.

∗The source code for the work presented here and few more examples are
available to download from https://github.com/L-TChen/MtacAR.
1There are certainly other typed tactic languages. See [4, 10] for comparison.

PL’18, January 01–03, 2018, New York, NY, USA
2018.

2 A trivial example
Due to the page limit, we demonstrate a somewhat trivial
tautology solver taken from [10] with our syntax:

{-# TERMINATING #-}
prop-tauto : {P : Set}→⃝ P
prop-tauto {P } = mcase P of
| ⊤ ⇒ L tt M
| P : _ , Q : _ , P × Q ⇒ L prop-tauto , prop-tauto M
| P : _ , Q : _ , P ⊎ Q⇒ L inj1 prop-tauto | inj2 prop-tauto M
| P ⇒ LM
end

The type Set is not inductively defined, so the termination
checker is not able to decide whether the recursive tactic ter-
minates or not. Hence we switch off the termination checker
for it, but it is okay—tactics are executed during type infer-
ence and the generated values will be checked.

The tactic starts with an mcase construct—pattern match-
ing for arbitrary expression which works as expected except
that variables are introduced explicitly with type annotation
before being used in the pattern. Each case is easy to follow:

1. If P is the unit ⊤, it returns the constructor tt.
2. If P is a product P ×Q for some P and Q , it returns a

pair of values found by the tactic.
3. If P is a sum P ⊎Q , it searches for a value of the left

disjunct. If it fails, then it proceeds with the right dis-
junct.

4. If none of above is matched, then it returns nothing.
Note that there are no explicit arguments or type annotations,
as they will be inferred by unification in this particular case.

The idiom bracket notation L. . . | . . . Mwith possibly empty
choices is a syntax sugar proposed in [5, 6] for applicative
functors equipped with a monoidal structure. Its use with
mixfix notation [2] is essential for readability. Otherwise,
using the do-notation as in [10], the second case needs to
thread arguments explicitly:

| P : _ , Q : _ , P × Q⇒ (do
x← prop-tauto
y← prop-tauto
return (x , y))

Instance arguments [3] are used to infer which Applicative
functor and which Monad are being used when invoking
idiom brackets, the do-notation, etc. Instead the original

1

https://github.com/L-TChen/MtacAR

PL’18, January 01–03, 2018, New York, NY, USA Liang-Ting Chen

Mtac throws an exception using mtrywhen no value is found.
As mtry is prefixed by m, the users need to remember the
naming difference if a similar construct has existed already.
Executing a tactic is simple. A tactic is placed in a term

position and executed by a macro (see below). The following

solve : ⊥ ⊎ (⊤ ⊎ List N) × ⊤
solve = Proof prop-tauto ■

will have a term inj2 (inj1 tt , tt) filled by the type checker.
The reader who is familiar with Mtac may notice that

there is one construct missing in our example—mfix. In Coq
it is used to define a recursive tactic, but a macro can just
call any other function during execution.

3 From the TC monad to the ⃝ monad
The elaborator reflection in Agda (and in Idris) is manipu-
lated through the type checking monad

TC : Set ℓ→ Set ℓ

which encapsulates states such as contexts for metavariables.
Our⃝ monad is defined as⃝ A = TC Tac for everyAwhere

data Tac : Set where
term : Term → Tac
error : Exception→ Tac

and Term is the type for the reflected syntax using the de
Bruijn index. In [4, 10],⃝ is defined as a predicate whose tar-
get is the impredicate universe Prop to address the circular-
ity when defining mfix. Agda does not have an impredicate
universe but there is no need to define mfix either.
The return and bind are defined using the primitives

quoteTC : A→ TC Term
unquoteTC : Term→ TC A

where the first function reifies an abstract value to Term and
the second function translates a Term back to a value.

Elaborator reflection allows the language users to invoke
type checking, whnf reduction, and unification explicitly via

checkType : Term→ Type → TC Term
reduce : Term → TC Term
unify : Term→ Term→ TC ⊤

respectively. They are essential to our implementation.
A macro is a function of type t1 → · · · → Term→ TC ⊤

defined in a macro block. To run a macro, the last argument
Term is supplied by the type checker and will be the metavari-
able for instantiation by unification to fill in the term position.
If a tactic ⃝A is return (term t), then t will be unified with
the metavariable created by the type checker.
Monad laws are proved by postulating that subject only

to α-conversion (i) TC satisfies monad laws; (ii) quoteTC is
injective; (iii) quoteTC followed by unquoteTC is the return
of TC; (iv) for ⃝A, inhabitants of TC Term are identified if
they cannot be differentiated by unquoteTC to A.

4 Implementation of mcase
An acute reader may have wondered how the mcase con-
struct is defined to accommodate arbitrary expression as
there is no typical ambiguity in Agda. For this, we use the
kind Setω of universe polymorphic terms and an optional
typing rule Setω : Setω which breaks consistency.2 The rule
is only used internally and is not used when checking the
generated terms, so no harm will be done.

In detail, the following datatype is used to encode patterns:

data Patt (P : A→ Set ℓ) : Setω where
Pbase : (x : A) →⃝ (P x)→ Patt P
Ptele : (C : Set ℓ′)→ (C→ Patt P)→ Patt P

The constructor Ptele is used to introduce a variable into the
context and Pbase to store a pattern as the first argument
and a body as the second argument. For example, the last
clause of prop-tauto expends to Ptele (λ p → Pbase p LM).

Contrary to the common conception, de Bruijn indices are
rarely manipulated directly. For example, splitting a Patt P
into a patten and a body is defined by

split : Patt P→ TC (Term × Term)
split (Pbase x px) = L quoteTC x , quoteTC px M
split (Ptele C f) =
quoteTC C »= newMeta »= unquoteTC »= λ x→ split (f x)

replacing every variable occurred by a metavariable.
Checking a non-empty list of patterns is a function

mcase_of : (x : A)→ Patts P (suc n)→⃝ (P x)

trying to unify a list of patterns in order against the first
argument where Patts is a length-indexed list for Patt. If
no pattern is matched, then an exception will be thrown.

5 Further work
We have exploited elaborator reflection and Agda’s recent
features to embed a typed tactic language without impred-
icativity or typical ambiguity.

However, its poor performance is the main defect to over-
come, as tactics are interpreted during type inference. It is
also an issue shared with Mtac in Coq, though.
A type-theoretic understanding of elaborator reflection

and perhaps its connection with (contextual) modal type
theory [7, 9] are also interesting to investigate.

Acknowledgments
The author would like to thank Hsiang-Shang ‘Josh’ Ko for
his helpful comments. This research was supported by the
EPSRC project Data Release–Trust, Identity, Privacy and
Security (EP/N028139/1 and EP/N027825/1).

2Setω and the option –omega-in-omega are introduced in the version 2.6.0.
2

Monadic typed tactic programming by reflection PL’18, January 01–03, 2018, New York, NY, USA

References
[1] David Christiansen and Edwin Brady. 2016. Elaborator reflection:

extending Idris in Idris. In Proceedings of the 21st ACM SIGPLAN In-
ternational Conference on Functional Programming - ICFP 2016, Vol. 51.
ACM Press, New York, New York, USA, 284–297. https://doi.org/10.
1145/2951913.2951932

[2] Nils Anders Danielsson and Ulf Norell. 2011. Parsing Mixfix Operators.
In Implementation and Application of Functional Languages. IFL 2008,
Sven-Bodo Scholz and Olaf Chitil (Eds.). Lecture Notes in Computer
Science, Vol. 5836. Springer, Berlin, Heidelberg, 80–99. https://doi.
org/10.1007/978-3-642-24452-0_5

[3] Dominique Devriese and Frank Piessens. 2011. On the bright side of
type classes. In Proceeding of the 16th ACM SIGPLAN international con-
ference on Functional programming - ICFP ’11, Vol. 46. ACM Press, New
York, New York, USA, 143. https://doi.org/10.1145/2034773.2034796

[4] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas,
and Derek Dreyer. 2018. Mtac2: typed tactics for backward reasoning
in Coq. Proceedings of the ACM on Programming Languages 2, ICFP
(July 2018), 1–31. https://doi.org/10.1145/3236773

[5] Conor McBride. 2009. Idiom brackets. https://personal.cis.strath.ac.
uk/conor.mcbride/pub/she/idiom.html

[6] Conor McBride and Ross Paterson. 2008. Applicative programming
with effects. Journal of Functional Programming 18, 01 (Jan. 2008),
1–13. https://doi.org/10.1017/S0956796807006326

[7] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Con-
textual modal type theory. ACM Transactions on Computational Logic
9, 3 (June 2008), 1–49. https://doi.org/10.1145/1352582.1352591

[8] Ulf Norell. 2016. Agda reflection overhaul. https://lists.chalmers.se/
pipermail/agda/2016/008414.html

[9] F. Pfenning. 2002. Intensionality, extensionality, and proof irrelevance
in modal type theory. In Proceedings 16th Annual IEEE Symposium
on Logic in Computer Science. IEEE Comput. Soc, 221–230. https:
//doi.org/10.1109/LICS.2001.932499

[10] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar
Nanevski, and Viktor Vafeiadis. 2015. Mtac: A monad for typed tactic
programming in Coq. Journal of Functional Programming 25 (Aug.
2015), e12. https://doi.org/10.1017/S0956796815000118

3

https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/3236773
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/idiom.html
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/idiom.html
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/1352582.1352591
https://lists.chalmers.se/pipermail/agda/2016/008414.html
https://lists.chalmers.se/pipermail/agda/2016/008414.html
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1017/S0956796815000118

	Abstract
	1 Introduction
	2 A trivial example
	3 From the TC monad to the ○ monad
	4 Implementation of mcase
	5 Further work
	Acknowledgments
	References

