
Shallowly Embedding Type Theories as
Presheaf Models in Agda

Extended Abstract

Joris Ceulemans
Vrije Universiteit Brussel
joris.ceulemans@vub.be

Dominique Devriese
Vrije Universiteit Brussel

dominique.devriese@vub.be

1 Introduction
There are several type systems which extend Martin-Löf
Type Theory (MLTT) by providing extra operations on types
and terms or by including new axioms. Of course, the ability
to use these new constructs when proving a theorem or when
writing a program does not come for free, one has to check
that the resulting type system remains consistent. In a lot of
cases this can be accomplished by constructing a presheaf
model of the type theory inwhich all the extra operations and
axioms are given a semantic meaning [8]. Examples include
presheaf models of type theories with support for guarded
recursion [4], with support for parametricity [1, 11, 12], and
of univalent/cubical type theory [5].
However, in order to use these new features in a proof

assistant based onMLTT such as Agda, one basically has two
options: either to postulate the new operations or axioms, in
which case they will not have any computational content, or
to implement an extension of the proof assistant, which has
happened for instance with Agda’s cubical mode [15] but
which requires a lot of work (and in general this effort needs
to be repeated for every extension of MLTT one wants to
consider). In both approaches, soundness of the extensions
needs to be proven separately, meta-theoretically.
In this extended abstract, we present work in progress

on a shallow embedding of extensions of MLTT in Agda as
presheaf models. More concretely, the terms, types, . . . of
an object theory are represented in Agda using the presheaf
construction and a user can manipulate them in the style of
a category with families (CwF) [6, 8], with variables in de
Bruijn form. Extra operations or axioms can be implemented
by instantiating the framework with a suitable base category.
Most Agda definitions appearing in the text will only in-

clude the type, not the implementation. Details such as uni-
verse levels will be elided to enhance readability. The full
code can be found at https://github.com/JorisCeulemans/
shallow-presheaf-embedding/tree/tyde-2020.

2 Overview of the Framework
Our framework is parametrized by a small base category 𝐶
that will depend on the extension of MLTT under considera-
tion. For such a category C : Category, we denote by Ob C

TyDe 2020, August 23, 2020, online
2020.

: Set its type of objects and by Hom C x y : Set the type of
morphisms from an object 𝑥 to an object 𝑦.
The framework then consists of Agda (record) types for

the different kinds of judgements present in MLTT. The
overall structure is that of Dybjer’s internal CwFs [6]. This
means that we first introduce the notion of contexts, then
that of types in a context and finally that of terms of a type
in a context.

First of all, a context is represented as a presheaf over the
base category 𝐶 (i.e. a contravariant functor from 𝐶 to the
category of Agda types and functions).
record Ctx (C : Category) : Set where
field
set : Ob C→ Set
rel : ∀ {x y }→ Hom C x y → set y → set x
(. . .)

Here two fields expressing the functor laws were elided.
Similarly, we have for any context Γ : Ctx C an Agda type

of types in this context,
record Ty (Γ : Ctx C) : Set where (. . .)

and for every type T : Ty Γ there is an Agda type of terms of
type T in the context Γ.
record Tm (Γ : Ctx C) (T : Ty Γ) : Set where (. . .)

The precise types of the fields in these records will not be
important in the rest of the discussion.
Furthermore, we provide for any two contexts Δ and Γ a

type Δ ⇒ Γ of substitutions from Δ to Γ and an action of
a substitution on types and terms. More concretely, if 𝜎 : Δ
⇒ Γ and T : Ty Γ and t : Tm Γ T, then T [𝜎] : Ty Δ and t
[𝜎]’ : Tm Δ (T [𝜎]). We can also extend a context Γ with
a type T : Ty Γ to obtain a context Γ „ T (which would be
written in MLTT as Γ, 𝑥 : 𝑇) and then we get a substitution
𝜋 : Γ „ T ⇒ Γ and a term 𝜉 : Tm (Γ „ T) (T [𝜋]). This term 𝜉

corresponds to the variable rule in MLTT for the last variable
in the context (so to the judgement Γ, 𝑥 : 𝑇 ⊢ 𝑥 : 𝑇). Finally,
there are Agda types expressing equality of substitutions, of
types and of terms.1 Each of these types will in the text be
denoted by _�_. Given an equality proof e : T � S for two
types 𝑇, 𝑆 : Ty Γ, a term s : Tm Γ S can be converted into a
term 𝜄[e] s : Tm Γ T.
1Working with these custom-defined equality types turns out to be easier
than with standard propositional equality.

https://github.com/JorisCeulemans/shallow-presheaf-embedding/tree/tyde-2020
https://github.com/JorisCeulemans/shallow-presheaf-embedding/tree/tyde-2020

TyDe 2020, August 23, 2020, online Joris Ceulemans and Dominique Devriese

Moreover, in any presheaf model (irrespective of the base
category𝐶) we can construct simple types, such as booleans
and natural numbers, and some basic type operators and
term constructors. For example, we have a type Nat’ : Ty
Γ of natural numbers and a term zero’ : Tm Γ Nat’ for any
context Γ and we can implement simple product types
⊠ : Ty Γ → Ty Γ → Ty Γ

pair : Tm Γ T→ Tm Γ S → Tm Γ (T ⊠ S)
fst : Tm Γ (T ⊠ S) → Tm Γ T
snd : Tm Γ (T ⊠ S) → Tm Γ S

and simple (non-dependent) function types.
⇛ : Ty Γ → Ty Γ → Ty Γ

lam : (T : Ty Γ)→ Tm (Γ „ T) (S [𝜋])→ Tm Γ (T⇛ S)
app : Tm Γ (T⇛ S) → Tm Γ T → Tm Γ S

Note that the body of a lambda abstraction has type S [𝜋]
rather than S because the latter is not a type in context Γ „ T.

3 A Concrete Example: Guarded Recursion
To demonstrate how we intend to use the embedding of
presheaf models in Agda described above, we will consider
in this section guarded recursion as a specific application.
Guarded recursion was originally developed by Nakano [10],
it is a technique for writing productive recursive definitions
involving coinductive data types using a modality ⊲ on types
called “later”. Presheaf models for guarded recursion were
described in for instance [3, 4].
We can work with guarded recursion in our framework

by instantiating it with the category 𝜔 as the base category
(this is the category structure induced on the setN of natural
numbers by its standard order relation). In this case we can
define a later modality ⊲’ on types.2

⊲’ : {Γ : Ctx 𝜔}→ Ty Γ → Ty Γ

next’ : Tm Γ T→ Tm Γ (⊲’ T)

Using standard induction for natural numbers, we can also
provide an operation corresponding to Löb induction (note
that ⊲’ binds more tightly than⇛)
löb : (T : Ty Γ) → Tm Γ (⊲’ T⇛ T)→ Tm Γ T

and show that it produces fixpoints.
löb-is-fixpoint : (f : Tm Γ (⊲’ T⇛ T)) →

löb T f � app f (next’ (löb T f))

The prototypical example in the literature on guarded
recursion is the type of guarded streams. We can define in
our setting the type
Stream : {Γ : Ctx 𝜔}→ Ty Γ

of guarded streams of natural numbers. The intuition is that
Stream is isomorphic to the typeNat’ ⊠ ⊲’ Stream, and hence
the constructor for streams has the following form.3

2Note that in the Agda code the modality ⊲’ is defined in terms of a more
basic modality ⊲ that we will not discuss in this abstract. This explains the
prime symbol in its name.
3This is not completely accurate regarding the difference between ⊲ and ⊲’.
See the full code for details.

str-cons : Tm Γ (Nat’ ⊠ (⊲’ Stream)) → Tm Γ Stream

We can then use Löb induction to define a constant stream
of zeros

zeros : Tm ⋄ Stream
zeros = löb Stream

(lam (⊲’ Stream) (𝜄[. . .] (str-cons
(pair zero’ (𝜄[. . .] 𝜉)))))

where ⋄ is the empty context and where the . . . represent two
equality proofs for types. More concretely, the first proof has
type Stream [𝜋] � Stream and this fact is not surprising as
Stream is a non-dependent type (the proof itself is also very
simple and provided as an operation available to the user).
The second proof, on the other hand, is not straightforward
although it also boils down to the fact that Stream is a non-
dependent type. We consider this an inconvenience in our
framework that needs to be dealt with in order to obtain a
system that is user-friendly.

4 Related and Future Work
In [9], Jaber et al. describe a translation based on presheaves
from extensions of the Calculus of Constructions (CoC) to
CoC itself. However, their framework is quite different to
work with (there is no CwF-like structure) and they make use
of subtypes, which are not present in Agda. Veltri and van der
Weide [14] provide presheaf semantics of guarded recursion
in Agda in a way which is similar to ours. Both [9] and [14]
consider presheaves over a preorder rather than a general
category. Guarded recursion can also be presented in Agda
using ordered families of equivalences, as in for example
https://github.com/metaborg/mj.agda/tree/develop. Again,
this approach does not generalize to arbitrary categories. In
[2], Bickford formalizes presheaf models for general base
categories using the structure of a CwF in Nuprl, which is a
proof assistant implementing an extensional version of type
theory. To the best of our knowledge, our framework is the
first shallow embedding of type theories using presheaves
over general categories in intensional type theory. Another
approach to formalize presheaf models, is to use Agda’s type
theory as the internal language of the presheaf topos, like in
[13].

As discussed previously, we first want to make our frame-
work more usable by reducing the number of type equality
proofs that a user needs to provide. Next, we plan to study
different extensions ofMLTT using concrete presheaf models
with specific base categories. In the first instance, we intend
to consider applications involving non-dependent types, but
we are planning to add dependent types and a universe type
to the framework as well in a later phase. Another interesting
path to explore in our framework is multimode type theory
as described in [7].

https://github.com/metaborg/mj.agda/tree/develop

Shallowly Embedding Type Theories as Presheaf Models in Agda TyDe 2020, August 23, 2020, online

Acknowledgments
Joris Ceulemans holds a PhD Fellowship from the Research
Foundation – Flanders (FWO).

References
[1] Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A Relationally

Parametric Model of Dependent Type Theory. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Diego, California, USA) (POPL ’14). Association for
Computing Machinery, New York, NY, USA, 503–515. https://doi.org/
10.1145/2535838.2535852

[2] Mark Bickford. 2018. Formalizing Category Theory and Presheaf
Models of Type Theory in Nuprl. CoRR abs/1806.06114 (2018).
arXiv:1806.06114 http://arxiv.org/abs/1806.06114

[3] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and
Kristian Støvring. 2012. First steps in synthetic guarded domain theory:
step-indexing in the topos of trees. Logical Methods in Computer Science
Volume 8, Issue 4 (Oct. 2012). https://doi.org/10.2168/LMCS-8(4:1)2012

[4] Aleš Bizjak and Rasmus Ejlers Møgelberg. 2018. Denotational seman-
tics for guarded dependent type theory. CoRR abs/1802.03744 (2018),
40 pages. arXiv:1802.03744 http://arxiv.org/abs/1802.03744

[5] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg.
2016. Cubical Type Theory: a constructive interpretation of the uni-
valence axiom. CoRR abs/1611.02108 (2016), 34. arXiv:1611.02108
http://arxiv.org/abs/1611.02108

[6] Peter Dybjer. 1996. Internal type theory. In Types for Proofs and Pro-
grams, Stefano Berardi and Mario Coppo (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 120–134.

[7] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020.
Multimodal Dependent Type Theory. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken,
Germany) (LICS ’20). ACM, New York, NY, USA, 15. https://doi.org/
10.1145/3373718.3394736

[8] Martin Hofmann. 1997. Syntax and Semantics of Dependent Types.
Cambridge University Press, 79–130. https://doi.org/10.1017/
CBO9780511526619.004

[9] Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. 2012. Extend-
ing type theory with forcing. In 27th Annual IEEE Symposium on Logic
in Computer Science. IEEE, 395–404. https://doi.org/10.1109/LICS.2012.
49

[10] H. Nakano. 2000. A modality for recursion. In Proceedings Fifteenth
Annual IEEE Symposium on Logic in Computer Science. 255–266.

[11] Andreas Nuyts and Dominique Devriese. 2018. Degrees of Related-
ness: A Unified Framework for Parametricity, Irrelevance, Ad Hoc
Polymorphism, Intersections, Unions and Algebra in Dependent Type
Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 779–788.
https://doi.org/10.1145/3209108.3209119

[12] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Para-
metric Quantifiers for Dependent Type Theory. Proc. ACM Program.
Lang. 1, ICFP, Article 32 (Aug. 2017), 29 pages. https://doi.org/10.1145/
3110276

[13] Ian Orton and Andrew M. Pitts. 2018. Axioms for Modelling Cubical
Type Theory in a Topos. Logical Methods in Computer Science Volume
14, Issue 4 (Dec. 2018). https://doi.org/10.23638/LMCS-14(4:23)2018

[14] Niccolò Veltri and Niels van der Weide. 2019. Guarded recursion
in Agda via sized types. In 4th International Conference on Formal
Structures for Computation and Deduction (Dortmund, Germany).
Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 32:1–
32:18. https://hdl.handle.net/2066/204586

[15] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical
Agda: A Dependently Typed Programming Language with Univalence

and Higher Inductive Types. Proc. ACM Program. Lang. 3, ICFP, Article
87 (July 2019), 29 pages. https://doi.org/10.1145/3341691

https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/2535838.2535852
https://arxiv.org/abs/1806.06114
http://arxiv.org/abs/1806.06114
https://doi.org/10.2168/LMCS-8(4:1)2012
https://arxiv.org/abs/1802.03744
http://arxiv.org/abs/1802.03744
https://arxiv.org/abs/1611.02108
http://arxiv.org/abs/1611.02108
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1109/LICS.2012.49
https://doi.org/10.1109/LICS.2012.49
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.23638/LMCS-14(4:23)2018
https://hdl.handle.net/2066/204586
https://doi.org/10.1145/3341691

	1 Introduction
	2 Overview of the Framework
	3 A Concrete Example: Guarded Recursion
	4 Related and Future Work
	Acknowledgments
	References

