
Extended Abstract: Generalization of Meta-Programs

with Dependent Types in Mtac2 with Mtac2

Ignacio Tiraboschi

FAMAF, UNC

Córdoba, Argentina

ignatirabo@gmail.com

Jan-Oliver Kaiser

MPI-SWS

Saarbrücken, Germany

janno@mpi-sws.org

Beta Ziliani

FAMAF, UNC and CONICET

Córdoba, Argentina

beta@mpi-sws.org

1 Motivation

Meta-languages are becoming an essential part of proof as-

sistants, as they enable the proof developer to automate her

proofs. Hence, an increasing number of provers are adopt-

ing different meta-languages. In the particular case of the

Coq proof assistant, to day there exists a myriad of meta-

languages: [1, 3, 5–7]. From these, Ltac [3] is the standard de
facto, although it is expected that others will quickly catch-

up. These languages share something in common: they do

not provide static guarantees over the Coq terms they manip-

ulate. In contrast, the Mtac andMtac2meta-languages [4, 8]

take a different path, coding meta-programs within a monad

in Coq to obtain typed meta-programs. That is, an Mtac2

meta-program with type M A will ensure that the value re-

turned will indeed have type A.

However, the combination of monads and dependent types

presents an interesting challenge: The convoy pattern[2]—
an extremely useful and often necessary tool for dependent

programming in Coq—is not automatically supported. The

convoy pattern is necessary when dependent pattern match-

ing inspects values on which the types of other values depend.
For example, imagine a function to compute the maximum

of a list l: list nat whose non-emptiness is witnessed by

hypothesis H: l <> nil. Seasoned Coq programmers will

know that to implement this function, the pattern matching

within needs to be generalized over l and H:

(fix list_max_nat_pure l : l <> nil → X :=

match l as l' return l' <> nil → X with

| [] ⇒ fun H ⇒ match H eq_refl with end

| [e] ⇒ fun _ ⇒ e

| (e1 :: e2 :: l') ⇒ fun H ⇒
let x := Nat.max e1 e2 in

list_max_nat_pure (x :: l') cons_not_nil

end) l H

The convoy pattern describes the necessity of generalizing

over H, as H’s type is different in every branch. And it is ex-

actly this generalization that causes friction in the monadic

setting as can be seen in the type of Mtac2’s fixpoint com-

binator mfix1:

∀ X (P: X → Type),

((∀ x, M (P x)) → ∀ x, M (P x)) → ∀ x, M (P x)

We cannot instantiate P to introduce an hypothesis such as

H: The best we can do is ∀ l, M (l <> nil → X), giving us

access to the proof only once we return a pure value from

within the monad. This restriction applies to all monadic

operators in Mtac2 and, thus, prohibits us from applying

the convoy pattern as one would in non-monadic code.

Experienced functional programmers might suggest un-

currying the arguments by packing them into a dependent

pair. While possible, this approach requires extra care in

meta-programs, where pattern matching may distinguish

convertible but syntactically different terms.

To avoid this particular pitfall, Mtac2 provides generalized

fixpoint and pattern matching operators, written mfix and

mtmmatch, respectively. Using dependent pairs under the hood,
i. e. transparently, they allow us to write a monadic version

of list_max_nat_pure in a carefree way.
1

Definition list_max_nat: ∀ l, l <> nil → M nat :=

mfix f (l: list nat) : l <> nil → M nat :=

mtmmatch l as l' return l' <> nil → M nat with

| [? e] [e] ⇒ fun H ⇒ ret e

| [? e1 e2 l'] (e1 :: e2 :: l') ⇒ fun H ⇒
let x := Nat.max e1 e2 in

f (x :: l') cons_not_nil

end.

However, Mtac2 offers many more monadic operations

and users are free to write new ones. Do we need to manually

generalize all of them? To answer that question, let us intro-

duce bind into our program. To motivate the use of bind, we

change our program take in lists of arbitrary type, using an-

other meta-program, max, to compute a suitable comparison

function.

Definition max (S: Set) : M (S → S → S) :=

Wewould then like to generalize nat in list_max_nat to an

arbitrary set S, bind the result of max S and us it to compute

the maximum:

Definition list_max (S: Set): ∀ l, l <> nil → M S :=

max_f ← max S;

mfix f (l: list S) : l <> nil → M S :=

... <use max_f instead of Nat.max> ...

1mtmmatch patterns can bind arbitrary (sub)terms and its patterns use the

notation [? a ... z] to name these terms.



TyDe 2020, August 23, 2020, Jersey City, NJ Ignacio Tiraboschi, Jan-Oliver Kaiser, and Beta Ziliani

However, types do notmatch:Mtac2’s bind operator (writ-

ten using the traditional notation a ← f; g) has type:

bind : forall {A B : Type}, M A → (A → M B) → M B

In our example, the mfix term returns ∀ l, l <> nil → M S:

the M does not occur at the top-most position in the type as

bind expects it. Thus, without a suitably generalized version

of bind, we once again cannot just apply the convoy pattern.2

In this work we present a new meta-meta-program lift

that provides a semi-automatic solution: given any meta-

program or operator (like bind) and a list of dependencies

(what lies behind the last → in the type of mfix above), it

generates a new operator that can be used in a context where

such dependencies are expected. It is important to mention

that we use Mtac2 as is as its own meta-language!

2 Result

At the moment, we have a working solution that requires

the developer to explicitly provide the list of dependencies,

even when they can be inferred from the context. We discuss

this in section 4.

In this case, we would wish to make bind more general.

Specifically we wish to get the following function bind^.

bind^ : ∀ {A B : ∀ l (H : l <> nil), Type},

∀ l H, M (A l H) →
∀ l H, (A l H → M (B l H)) →
∀ l H, M (B l H)

This signature is derived from that of the fixpoint, which

gets two arguments l and H before returning the (monadic)

value. Note the following: in our case, the first (non-implicit)

argument of bind^will be max S, and therefore will not make

use of the dependencies available. However, if we think of

the general case, we have to include them. What this means,

in essence, is that max S must also be lifted to include such

dependencies.

In concrete, we can lift the bind operator to have a type

that matches the expected type for our example by writing:

@bind † [t: (l: list S) (_ : l <> nil)]

The @ is Coq’s syntax to not insert implicit variables (A and

B for bind); the † is notation for the lift function; and [t:

a ... z] is notation for a telescope listing the dependencies
a to z (which are binders).

We can then write the new list_max program as follow:

Definition list_max (S: Set) : ∀ l, l <> nil → M S :=

(@bind † [t: (l: list S) (_ : l <> nil)]) _ _

(max S † [t: (l:list S) (_ : l <> nil)])

(fun l (H: l <> nil) (max : S → S → S) ⇒
(mfix2 f (l: list S) (H : l <> nil) : M S :=

(mtmmatch l as l' return l' <> nil → M S with

| [? e] [e] ⇒ ret e † [t: (_ : [e] <> nil)]

2
It is possible to introduce all arguments and beta-expand the fixpoint but

we consider this inadvisable for reasons of readability and maintainability.

| [? e1 e2 l'] (e1 :: e2 :: l') ⇒ fun H ⇒
let m := max e1 e2 in

f (m :: l') cons_not_nil

end) H) l H).

While it certainly looks verbose, we are certain we can

trim down the boilerplate and make it look as a regular

‘bind‘ with two extensions, that we leave for future work:

1) as said before, we know from the context the types the

telescope should have, we must be able to construct them

automatically; 2) similarly, if we know a parameter is not

using the dependencies, like our max function above, lift

should not introduce unnecessary dependencies.

3 Technicalities

Under the hood, lift is quite involved. The code can be

downloaded from

https://github.com/ignatirabo/Mtac2_lift

It is implemented in Mtac2 itself as a recursive function

over the signature of the target meta-program, after reflect-
ing it in a datatype TyTree to allow a proper manipulation.

In order to map from and to a Coq type, we define functions

to_ty : TyTree → Type, which trivially translates a TyTree

to a Coq type, and the inverse to_tree : Type → M TyTree,

which pattern matches on the type to obtain the correspond-

ing TyTree. Therefore, this last function must be monadic.

The actual lifting occurs in lift'. lift’ takes a function

f, our lifting candidate, with its encoded type, and the corre-

sponding telescope, then returning a Σ-type, wrapped in the

monad M, with the new signature and function.

4 Conclusion and Future work

At the moment, lift has been implemented and is working

as expected. We are currently studying different scenarios

to find its limitations (we currently have no proof of its

completeness). Yet, so far we found it can lift many useful

operators, besides of bind and ret.

Performancewise, lift has linear complexity as is a simple

recursion over the signature of the target function, and it is

in practice rather fast.

In the future, we plan on integrating lift into Mtac2

as a standard feature, but for that, we need to improve the

notation for lifting to automatically infer the telescope by

analyzing the current context. For example, in the list_max

example from Section 2, we should be able to obtain the

returned type forall l:list S, l <> nil → M S and con-

struct from it the telescope. Ideally, we should be able to

also find that the argument of bind (max S) does not make

use of the dependencies and avoid generating them for the

argument.

What we expect in the end is to be able to use lifted func-

tions and operators as one would do without the unlifted

ones when no convoy pattern is required.

https://github.com/ignatirabo/Mtac2_lift


Generalization of Meta-Programs with Dependent Types TyDe 2020, August 23, 2020, Jersey City, NJ

References

[1] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and

Nicolas Tabareau. 2018. Towards Certified Meta-Programming with

Typed Template-Coq. In Interactive Theorem Proving - 9th International
Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings (Lecture Notes in Computer
Science), Jeremy Avigad and Assia Mahboubi (Eds.), Vol. 10895. Springer,

20–39. https://doi.org/10.1007/978-3-319-94821-8_2
[2] Adam Chlipala. 2013. Certified Programming with Dependent Types: A

Pragmatic Introduction to the Coq Proof Assistant. The MIT Press.

[3] David Delahaye. 2000. A Tactic Language for the System Coq. In Logic
for Programming and Automated Reasoning, 7th International Conference,
LPAR 2000, Reunion Island, France, November 11-12, 2000, //Proceedings
(Lecture Notes in Computer Science), Michel Parigot andAndrei Voronkov

(Eds.), Vol. 1955. Springer, 85–95. https://doi.org/10.1007/3-540-44404-
1_7

[4] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas,

and Derek Dreyer. 2018. Mtac2: typed tactics for backward reasoning

in Coq. PACMPL 2, ICFP (2018), 78:1–78:31. https://doi.org/10.1145/
3236773

[5] Gregory Malecha and Jesper Bengtson. 2016. Extensible and Efficient

Automation Through Reflective Tactics. In Programming Languages and
Systems - 25th European Symposium on Programming, ESOP 2016, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings
(Lecture Notes in Computer Science), Peter Thiemann (Ed.), Vol. 9632.

Springer, 532–559. https://doi.org/10.1007/978-3-662-49498-1_21
[6] Pierre-Marie Pédrot. [n.d.]. Ltac2. https://coq.inria.fr/distrib/current/

refman/proof-engine/ltac2.html
[7] Enrico Tassi. 2018. Elpi: an extension language for Coq (Metaprogram-

ming Coq in the Elpi𝜆Prolog dialect). (Jan. 2018). https://hal.inria.fr/hal-
01637063 working paper or preprint.

[8] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar

Nanevski, and Viktor Vafeiadis. 2015. Mtac: A monad for typed tactic

programming in Coq. J. Funct. Program. 25 (2015). https://doi.org/10.
1017/S0956796815000118

https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1007/978-3-662-49498-1_21
https://coq.inria.fr/distrib/current/refman/proof-engine/ltac2.html
https://coq.inria.fr/distrib/current/refman/proof-engine/ltac2.html
https://hal.inria.fr/hal-01637063
https://hal.inria.fr/hal-01637063
https://doi.org/10.1017/S0956796815000118
https://doi.org/10.1017/S0956796815000118

	1 Motivation
	2 Result
	3 Technicalities
	4 Conclusion and Future work
	References

