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We report about the ongoing development of a library for
dependently-typed programming with computations in in-
dex positions. Such indexing leads to notoriously difficult
unification problems. Here we combine the established ‘ford-
ing’ technique (§2) with our work on free extensions (frex)
developed for staged optimisation in OCaml and Haskell [22].
In brief, fording improves the judgmental-propositional

communication channel for equations while Frex provides
an extensible collection of algebraic solvers for discharging
these equations. We present our design in Idris2; we would
like to pursue similar development in other type theories.

1 Indexing with computations: the cons
To see how computations in indices go wrong, consider Alt,
a datatype of lists of values of alternating types, indexed by:

• even,odd: the two alternating types at each parity
• start: the parity of the first element
• parity: the parity of the list’s length

1 data Alt : (even,odd : Type)
2 -> (start, parity : Fin 2) -> Type where
3 Nil : Alt even odd start 0
4 (::) : (x : Choose even odd start)
5 -> (xs : Alt even odd (1 + start) parity)
6 -> Alt even odd start (1 + parity)

Here Fin 2 is the finite type with two values (0, 1), and
Choose chooses one of two types depending on a parity bit:

1 Choose : (even,odd : Type) -> Fin 2 -> Type
2 Choose even odd 0 = even
3 Choose even odd 1 = odd

Here is a value in Alt with Bool and String elements:
Example1 : Alt Bool String 0 0
Example1 = [True, "TyDe", False, "Idris2"]

To complete Alt’s definition, we need to define + on Fin 2:
1 -- binary modular
2 -- addition
3 mod2 : Nat -> Fin 2

4 mod2 Z = 0
5 mod2 ( S Z ) = 1
6 mod2 (S(S n)) = mod2 n

7 (+) : Fin 2 -> Fin 2 -> Fin 2
8 (+) x y = mod2 ((finToNat x) + (finToNat y))

Defining (+) this way, our choice to use (+) on lines 5 and 6
in Alt’s definition has well-known disastrous consequences.
The main cause is using an open term such as (1 + start)
for indices. This term reduces to (mod2 (S (finToNat y))),
a stuck computation and not an open value. The definition
of (+) is unnecessarily complicated here, but in general we
expect complicated functions as indices.

The problems start when we use Alt, e.g. in concatenation:
(++) : Alt even odd start left

-> Alt even odd (start + left) right
-> Alt even odd start (left + right)

It would be natural to define (++) inductively:
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

but these clauses are ill-typed. In the recursive call (xs ++ ?a),
the type of the hole ?a and the actual type of ys don’t unify:
ys: Alt even odd (start + (1 + parity)) right
?a: Alt even odd ((1 + start) + parity) right

We must therefore prove:
lemma: (x,y : Fin 2) -> x+(1+y) = (1+x)+y

and use rewriting mechanisms to inform the type-checker
of it. As we will see, fording (§2) makes this rewriting more
systematic. The full definition is in Fig. 2 in the appendix,
and it also uses the four axioms of commutative monoids:
lftNeutral : (x : Fin 2) -> 0 + x = x
rgtNeutral : (x : Fin 2) -> x + 0 = x
associative: (x,y,z : Fin 2)-> (x+y)+z = x+(y+z)
commutative: (x,y : Fin 2)-> x + y = y + x

What is vexing is that lemma easily follows from these four
axioms, but still requires explicit proof. In general, we expect
many more proof obligations like lemma, and we will need
to prove them separately. Our contribution is a library (Frex)
to discharge auxiliary equations like lemma immediately.

2 Fording
The standard technique fording1 replaces a computational
index f x by a fresh variable y and a propositional equality
y = f x. For example, fording Alt gives:

1 (::) : forall e, o, start, parity, p, q.
2 Choose e o start -> Alt e o p parity
3 -> {auto 0 prf1: p=1+start}
4 -> {auto 0 prf2: q=1+parity} -> Alt e o start q

Fording tells the type-checker not to bother discharging the
equation judgmentally but instead ask the programmer for it.
The Idris2 keyword auto gives the programmer a chance to
punt this question back to the type-checker, which will try
to insert Refl and resolve the equation judgmentally. The
annotation 0 is a quantity annotation [2, 13], telling Idris
to erase this argument at runtime. So fording in Idris2 has

1McBride [12, §3.5] names fording after Henry Ford’s quote: ‘any color so
long as it’s black’ [8].
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lower finger-typing cost and no run time costs compared to
languages without implicit proof search and quantities.
Pattern-matching in a forded type introduces adverse

‘noise’ when judgmental equality can inform the type-check-
er through unification. In this case, the programmer in-
serts reflection manually (or transport in high dimensional
type theories). Punting arbitrary equations back to the type-
checker could encode arbitrary word problems. Therefore,
any hypothetical fully automated solution would require
careful analysis of the equations fording produces. We’re
interested in reducing this fording noise nonetheless.

3 Frex: free extensions of algebras
We want to show the type-checker that two terms, such as
start + (1 + parity) and (1 + start) + parity, are
equal. The type-checker’s automatic judgmental equality
is too crude (§1): it is unaware of the equations governing
(+). As we saw, fording (§2) turns judgmental checks into
propositional obligations that can be discharged manually,
making it possible to use those equations. We now show
how to discharge the propositional obligations uniformly
by encoding a third notion of equality: equality in a freely
extended algebra.
To stay concrete, we discuss only commutative monoids,

i.e. types with a binary operation (+) and a constant 0 satis-
fying analogues of lftNeutral, rgtNeutral, associative,
and commutative. Our library deals with arbitrary such fi-
nite presentations (finitely many operations with finite arities
and equations between them). Given an algebra a (i.e., com-
mutative monoid), its free extension by x, written a[x] is the
algebra resulting by freely adjoining x elements to a. For com-
mutative monoids, the free extension a[Fin n] can be given
by the product (a, Vect n Nat), using (v, [k1,...,kn])
to represent v+k1*x1+...+kn*xn.

We’ve implemented Core Frex, a formalisation of universal
algebra (presentations, algebras, homomorphisms) and free
extensions, together with supporting definitions that make it
easier to define, and prove the universal property of, concrete
presentations, algebras, and free extensions, which we call
frexlets. We’ve only implemented the commutative monoids
frexlet in full, but plan to add frexlets for other presentations
we previously designed [22], including commutative rings,
semirings, abelian groups, and distributive lattices.
Frex makes substantial use of type-level computation,

which is supported efficiently by the nascent Idris2 compiler.
Frex is one of the first substantial Idris2 programs (around
4.3KLoC) alongside Idris2 itself, which is self-hosted.

In universal algebraic terms, we can present the free exten-
sion by: (1) taking as generators the elements of the concrete
algebra and the adjoined elements (variables); and (2) taking
as equations the presentation together with the evaluation
equations. For example, the free extension Bool[Fin 2],

resulting from extending the Booleans with logical con-
junction (&&) by adjoining two elements, has as genera-
tors True, False, 0, 1, and as equations the commutative
monoid axioms together with True && False = False, etc.
So we can see Frex as a normalisation-by-evaluation tech-
nique for algebraic theories. Abstracting over free extensions,
instead of presentations, lets us treat uniformly all algebras.

4 Indexing modulo equations
To use Frex for indexing modulo equations, the program-

mer fords their computational indices.When they need deriv-
able equations such as lemma, they invoke the Frexify func-
tion (Fig. 1 in the appendix) with the appropriate frexlet
to discharge these equations. The auto argument punts the
proof that the two sides of the equation have the same frexlet
interpretation back to the type-checker. For example:
(++) xs ys {prf1 =

Frexify (frex _) [start, parity]
(var 0 :+: (sta 1 :+: var 1) =-=
(sta 1 :+: var 0) :+: var 1)}

Idris2 auto finds the (1, [1, 1])=(1, [1, 1]) argument,
representing the shared normal form 1 + 1 · 𝑥0 + 1 · 𝑥1. We
include the full code for (++) in Fig. 3 in the appendix. With
Frex, programmers could focus on algebraic axioms for their
computations of interest, like the commutative monoid ax-
ioms, and discharge derivable equations with low cost.

One alternative to indexing modulo equations is to calcu-
late an inductive representation of the quotient datatype. Ap-
pendix 5 has a more thorough survey of existing approaches.
A promising difference Frex offers is that we only use new
operations and equations when we need them when defin-
ing operations on the datatype. As a consequence, we can
establish the equations as they are needed, and use only the
frexlet for the subset of operations we need to discharge each
equation. Were we to represent the quotient inductively, we
would need multiple representations and coercions between
them, or a combined monolithic representation accounting
for all possible operations and equations.

5 Prospects
As a first step, we plan to extend Frex with the full set of
frexlets from our previous work [22], and use them to in-
dex datatypes and operations on them like matrix manip-
ulation libraries. We expect many auxiliary equational re-
sults are needed for such libraries, and hope Frex can ease
writing them. Next, we would like to investigate how to
use Frex to directly inform unification, so that, for example,
the terms (?x + 1) + 1 and (?y + ?z) + 3 unify to give
?x = S (?y + ?z). Finally, we are interested in providing
Frex in other dependently-typed languages (Agda, Coq, Lean,
F★, etc.), and we hope a presentation in TyDe could help us
find collaborators for this purpose.
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Frexify : {n : Nat} -> {pres : Presentation} -> {a : Model pres}
-> (frex : Frex pres a (Fin n)) -> (env : Vect n (U a))
-> (eq : (Term (Sig pres) (Either (U a) (Fin n))

,Term (Sig pres) (Either (U a) (Fin n))))
-> {auto prf : frexSem frex (fst eq) = frexSem frex (snd eq)}
-> ( algSem frex env (fst eq) = algSem frex env (snd eq))

Figure 1. API to the frex algebraic solver

(++) {right} {start} [] ys
= rewrite sym (rgtNeutral start) in
rewrite lftNeutral right in ys

(++) {even=e} {odd=o} {start} {right}
((::) {parity} x xs) ys = vs

where
zs : Alt e o ((1 + start) + parity) right
zs = rewrite sym (lemma start parity) in ys
ws : Alt e o start (1 + (parity + right))
ws = x :: (xs ++ zs)
vs : Alt e o start ((1 + parity) + right)
vs = rewrite associative 1 parity right in ws

Figure 2. Concatenation with naive indexing by computa-
tions

Appendix: Existing approaches
Existing approaches either avoid indexing by computations,
discharge equations judgmentally, or propositionally.

Slime avoidance. McBride calls indexing by computations
‘green slime’ [14], as his preferred colour scheme for user-
defined functions is green, and indexing by computations
saturates the programwith more green proofs about these in-
dices. Instead, McBride advocates finding inductive represen-
tations approximating these computations-modulo-equations,
and index by these inductively defined values. To bridge the
gap between the inductive indices and the true quotient,
one uses McBride-McKinna views [15] to get open-terms
unstuck. The resulting design is extremely elegant and ap-
pealing, and plays seamlessly with the type-checker, unifier,
and interactive editing tools, enabling the so-called ‘banzai
programming’, where one repeatedly, blindly, and satisfy-
ingly assaults function definitions with repeated automatic
pattern-matching, refinement, and proof-search.

The main challenge slime avoiding design poses is that it’s
difficult to get right. The designer can spend years working
out exactly what to index by. Since the computation-indexed
program is exactly what we are trying to avoid, it is dif-
ficult to know in advance what we will need to quotient
by. A secondary challenge is that bespoke indexing hinders
code-reuse, as we need to re-implemented existing functions

for our special-purpose inductive index types. Ornamenta-
tion2 [5–7] with its many applications [10, 20, 21] can help
overcome some of this challenge.

Enriched judgmental equality. Allais et al. [1] demon-
strate by a careful model construction that the equational
theory decided by normalisation by evaluation can be en-
riched with additional rules. They implement a simply typed
language internalising the functorial laws for list as well as
the fusion laws describing the interactions of fold, map, and
append. They prove their construction sound and complete
with respect to the extended equational theory.

Cockx’s extension of Agda with the ‘–rewriting’ flag [4]
allows users to enrich the existing reduction relation with
new rules. This work goes beyond Allais’, since Cockx may
restart stuck computations. The question of guaranteeing
the soundness of user-provided reduction rules by ensuring
they neither introduce non-termination nor break canonicity
is left to future work. Concretely comparing both Allais
et al. and Cockx’s techniques to our proposed technique,
neither currently deals with commutativity.
Strub’s CoqMT [19] extends Coq’s Calculus of Inductive

Constructions, allowing users to extend the conversion rule
with arbitrary decision procedures for first order theories
(e.g. Presburger arithmetic). To guarantee that this extension
preserves good meta-theoretical properties, Strub only ex-
tends term level conversion. This seems incompatible with
our preferred approach to systematically index data and per-
form type-level conversion.

Algebraic solvers. The other approach is to bite the bullet,
write out the many proofs resulting from indexing by com-
putations, using automation to ease the task whenever is
possible. These tend to be bespoke to the project at hand,
but also include some general reusable libraries.
Within the Coq ecosystem, a plethora of tactics provide

such automation. Boutin’s ring [3] and field tactics3 let pro-
grammers discharge proof obligations involving (and requir-
ing!) addition, multiplication, and division operations. Imple-
mentations of Hilbert’s Nullstellensatz theorem (Harrison’s

2Conor McBride, Ornamental algebras, algebraic ornaments, unpublished.
3See the Coq documentation:
https://coq.inria.fr/distrib/current/refman/addendum/ring.html

3

https://coq.inria.fr/distrib/current/refman/addendum/ring.html
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data Alt : (even,odd : Type)
-> (start, parity : Fin 2) -> Type where

Nil : forall even, odd, start, p .
Alt even odd start FZ

(::) : forall even, odd, start, parity, p, q.
Choose even odd start

-> Alt even odd p parity
-> {auto 0 prf1 : p = 1 + start}
-> {auto 0 prf2 : q = 1 + parity}
-> Alt even odd start q

(++) : forall even, odd, start, parity_left,
parity_right, p, q.

Alt even odd start parity_left
-> Alt even odd p parity_right
-> {auto 0 prf1 : p = start + parity_left}
-> {auto 0 prf2 : q = parity_left + parity_right}
-> Alt even odd start q

(a) fording with runtime-irrelevant Idris2 auto-implicits
(++) {parity_right} {start} [] ys {prf1 = Refl} {prf2 = Refl} =
replace2 {p = Alt _ _}

(Frexify (frex 1) [start ] (var 0 :+: sta 0 =-= var 0))
(Frexify (frex 1) [parity_right] (var 0 =-= sta 0 :+: var 0))
ys

(++) {start} {parity_right}
((::) {parity} x xs {prf1 = Refl} {prf2 = Refl}) ys
{prf1 = Refl}
{prf2 = Refl}

= (::) x ((++) xs ys
{prf1 = Frexify (frex _)

[start, parity] $
var 0 :+: (sta 1 :+: var 1) =-= (sta 1 :+: var 0) :+: var 1})

{prf2 = Frexify (frex _)
[parity, parity_right] $
(sta 1 :+: var 0) :+: var 1 =-= sta 1 :+: (var 0 :+: var 1)}

(b) commutative monoids frexlet in action

Figure 3. indexing modulo equations with Frex

in HOL Light [9] and Pottier’s in Coq [16]) help users dis-
charge proofs obligations involving equalities of polynomials
on a commutative ring with no zero divisor.
In Idris, Slama and Brady [17, 18] implement a hierarchy

of rewriting procedures for algebraic structures of increasing
complexity. We follow this last approach, and additionally:
(1) our procedures are complete by construction, (2) our
procedures are based on normalisation-by-evaluation (like
Boutin’s tactic, and unlike Slama-Brady), and (3) our library is
extensible, where sufficiently motivated users can extend the
library with bespoke solvers, and we provide some support
for them to do so.
The Meta-F★ language [11] provides normalisation tac-

tics for commutative monoids and semi-rings through its
metaprogramming facilities. The way we use Frex resembles
how Meta-F★ uses these tactics. We hope to see whether
Frex can (1) use the metaprogramming facilities to reduce
the fording noise, and (2) can help in their verification efforts.
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