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1 Introduction
In most programming languages, data can flow arbitrarily
to any part of a program, being copied and discarded at
will. It has been long observed that this ‘free flow’ of data
is a source of program error, as some data has additional
constraints. Linear types [15, 25] recognise that some data
should not be allowed to flow arbitrarily, but should instead
be restricted to linear flow, being consumed once and never
copied or discarded. Bounded Linear Logic (BLL) provides
more flexibility, tracking the maximum number of allowed
uses for a piece of data [16]. BLL can be generalised to al-
low semiring-based analyses of the flow of data through a
program, referred to as coeffect analyses [6, 7, 14, 22, 24],
which include reuse, information flow security [22], hard-
ware scheduling [14], and sensitivity in differential privacy [10,
11]. Such systems track the dependency of runtime compu-
tations on data, but not the dependency of types on data.

Linear data-flow is rare in dependently-typed settings: e.g.,
the body of the polymorphic identity function in a Martin-
Löf style theory 𝑎 : Type, 𝑥 : 𝑎 ⊢ 𝑥 : 𝑎 uses 𝑎 twice (typing
𝑥 in the context and the subject of the judgment), and 𝑥 lin-
early in the subject but not at all in the type.There have been
various attempts to reconcile linear and dependent types [8,
9, 18, 19], usually keeping linear and dependent types sepa-
rate, allowing types to depend only on non-linear variables.
These theories are unable to distinguish variables used for
computation and those used just for type formation, which
could then be erased at runtime.

Recent work byMcBride [20], refined by Atkey [2], gener-
alises coeffect analyses to a dependently-typed setting. This
approach, calledQuantitative TypeTheory (Qtt), types the
above as 𝑎 0

: Type, 𝑥
1
: 𝑎 ⊢ 𝑥

1
: 𝑎. The annotation 0 on 𝑎

explains that we can use 𝑎 to form a type, but we cannot,
or do not, use it at the term level, thus it can be erased at
runtime. The cornerstone of Qtt’s approach is that data-
flow of a term to the type level counts as 0 use, so arbitrary
type-level use is allowed whilst still enabling quantitative
analysis of term-level data-flow.

Abel [1] follows on from the work on Qtt, noting some
of its shortcomings in describing all type-level usage with
0, including how we lose out on the reasoning benefits of
linear and quantitative typing when writing types and type-
checking code. For example, optimisations aided by linear
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types (e.g., static allocation and allocation reuse [17], and
erasure [5]) are no longer available at the type level, requir-
ing further analysis. Abel introduces a dependent type the-
orywhere terms and types are indexed by resource contexts,
which capture variable use in every type and term.

Our approach, called Graded Modal Dependent Type The-
ory (GRtt), has similarities to the work of Abel outlined
above—we also decouple resource information from contexts,
but rather than annotating terms and types, we annotate
contexts globally, describing variable use in the context, term,
and type of a judgment.This pervasive quantitative tracking
enables fine-grained quantitative analysis in both the com-
putational and type levels, meaning type-level use is not just
collapsed to 0 as in Qtt. In addition to resource annotations,
we provide rules for graded modalities, allowing the inspec-
tion of subparts of a term, not just terms as a whole; we
use the terminology of “grading”, a notion of augmenting
types with additional information to capture the structure
of proofs or terms [12, 22]. Combining linear, graded, and
dependent types and graded modalities provides a power-
ful substrate for specifying and reasoning about program
behaviour. For example, it goes towards enabling linearity-
based optimisations to speed up type-checking, inference,
and synthesis; support for type case without loss of para-
metricity; and fine-grained resource policies on types which
can be specialised to different domains and type theories
(e.g., recovering parametric types in a dependent setting).

2 Graded Modal Dependent Type Theory
The syntax of GRtt is that of a standardMartin-Löf type the-
ory, extendedwith a gradedmodality and grades annotating
binders of dependent function types: (𝑥 :(𝑠,𝑟 ) 𝐴) → 𝐵. Here,
𝑠 and 𝑟 range over the elements of a pre-ordered semiring
(R, ∗, 1, +, 0, ⊑), where + and ∗ are monotonic with respect
to ⊑. Typing judgments in GRtt have the form:

(Δ | 𝜎1 | 𝜎2) ⊙ Γ ⊢ 𝑡 : 𝐴

where the usual typing context Γ is treated as a vector, andΔ,
𝜎1, and 𝜎2 are vectors of the same size as Γ. Given Γ [𝑖] is an
assumption 𝑥 : 𝐵, then 𝜎1 [𝑖] ∈ R and 𝜎2 [𝑖] ∈ R are grades
explaining 𝑥 ’s usage in 𝑡 (the subject) and 𝐴 (the subject’s
type) respectively. Then Δ[𝑖] is a vector of grades, of size 𝑖 ,
which explains how each assumption prior to 𝑥 is used in
the formation of 𝑥 ’s type, 𝐵. We refer to Δ as a context grade
vector, and 𝜎1 and 𝜎2 as grade vectors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Benjamin Moon, Harley Eades III, and Dominic Orchard

Consider the semiring (N,×, 1, +, 0,≡), capturing exact us-
age of variables, then the body of the polymorphic identity
is typed: ((), (1) | 0, 1 | 1, 0) ⊙ 𝐴 : Type, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴. Here,
Δ = ((), (1)) (a vector of vectors) explains that there are no
assumptions prior to 𝐴, and 𝐴 is used once (grade 1) in the
formation of 𝑥 ’s type in the context. Then 𝜎1 = (0, 1) and
𝜎2 = (1, 0) explain that𝐴 and 𝑥 are used 0 and 1 times in the
subject, and 1 and 0 times in the subject’s type, respectively.
Figure 1 shows selected typing rules of GRtt.

VaR introduces variables. We see two copies of 𝜎 (the de-
pendencies used to form 𝐴) in the conclusion of the rule:
one copy is used to type 𝑥 in the context, by extending Δ;
and the other is used to account for the type-level usage of
𝐴. The notation 0 (promotion of 0 to a vector of appropri-
ate size) indicates that everything prior to 𝑥 in the context
should be associated with a 0 subject grade, as they are un-
used in the subject. The 1 and 0 grades denote the presence
of 𝑥 in the subject, and the absence of 𝑥 in the subject type.

WeaK weakens a context with an irrelevant assumption 𝑥 ,
by typing 𝑥 in the context, and marking 𝑥 with 0 grades.
Type types universes under the empty context (∅), using an
inductive hierarchy [23] with ordering <. We capture the
notion of approximation (e.g., an assumption that is used at
most zero times is also used at most once) in the ⊑ rule.The
⊑ relation is lifted to grade and context grade vectors.

(Δ | 𝜎 | 0) ⊙ Γ ⊢ 𝐴 : Type𝑙
(Δ, 𝜎 | 0, 1 | 𝜎, 0) ⊙ Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

VaR

(Δ | 𝜎1 | 𝜎2) ⊙ Γ ⊢ 𝑡 : 𝐴 (Δ | 𝜎3 | 0) ⊙ Γ ⊢ 𝐵 : Type𝑙
(Δ, 𝜎3 | 𝜎1, 0 | 𝜎2, 0) ⊙ Γ, 𝑥 : 𝐵 ⊢ 𝑡 : 𝐴 WeaK

(Δ | 𝜎1 | 𝜎2) ⊙ Γ ⊢ 𝑡 : 𝐴
Δ ⊑ Δ′ 𝜎1 ⊑ 𝜎 ′

1 𝜎2 ⊑ 𝜎 ′
2

(Δ′ | 𝜎 ′
1 | 𝜎 ′

2) ⊙ Γ ⊢ 𝑡 : 𝐴 ⊑
𝑙1 < 𝑙2

∅ ⊢ Type𝑙1 : Type𝑙2
Type

(Δ | 𝜎1 | 0) ⊙ Γ ⊢ 𝐴 : Type𝑙1
(Δ, 𝜎1 | 𝜎2, 𝑟 | 0) ⊙ Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type𝑙2

(Δ | 𝜎1 + 𝜎2 | 0) ⊙ Γ ⊢ (𝑥 :(𝑠,𝑟 ) 𝐴) → 𝐵 : Type𝑙1 ⊔ 𝑙2

→

(Δ, 𝜎1 | 𝜎2, 𝑠 | 𝜎3, 𝑟 ) ⊙ Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
(Δ | 𝜎2 | 𝜎1 + 𝜎3) ⊙ Γ ⊢ 𝜆𝑥.𝑡 : (𝑥 :(𝑠,𝑟 ) 𝐴) → 𝐵

𝜆𝑖

(Δ | 𝜎2 | 𝜎1 + 𝜎3) ⊙ Γ ⊢ 𝑡1 : (𝑥 :(𝑠,𝑟 ) 𝐴) → 𝐵
(Δ | 𝜎4 | 𝜎1) ⊙ Γ ⊢ 𝑡2 : 𝐴

(Δ | 𝜎2 + 𝑠 ∗ 𝜎4 | 𝜎3 + 𝑟 ∗ 𝜎4) ⊙ Γ ⊢ 𝑡1 𝑡2 : [𝑡2/𝑥]𝐵
𝜆𝑒

(Δ | 𝜎 | 0) ⊙ Γ ⊢ 𝐴 : Type𝑙
(Δ | 𝜎 | 0) ⊙ Γ ⊢ □(𝑠,𝑟 )𝐴 : Type𝑙

□

(Δ | 𝜎1 | 𝜎2) ⊙ Γ ⊢ 𝑡 : 𝐴
(Δ | 𝑠 ∗ 𝜎1 | 𝜎2 + 𝑟 ∗ 𝜎1) ⊙ Γ ⊢ □𝑡 : □(𝑠,𝑟 )𝐴

□𝑖

(Δ | 𝜎1 | 𝜎2 + 𝜎5) ⊙ Γ ⊢ 𝑡1 : □(𝑠,𝑟 )𝐴
(Δ, 𝜎5 | 𝜎3, 𝑠 | 𝜎4, 𝑟 ) ⊙ Γ, 𝑥 : 𝐴 ⊢ 𝑡2 : 𝐵

(Δ | 𝜎1 + 𝜎3 | 𝜎2 + 𝜎4) ⊙ Γ ⊢ let□𝑥 = 𝑡1 in 𝑡2 : let□𝑥 = 𝑡1 in𝐵
□𝑒

Figure 1. Typing for GRtt

The → rule shows that in introducing a dependent func-
tion type, the dependencies of𝐴 and 𝐵 are contracted by the
operation 𝜎1 + 𝜎2 (vector addition using the + of the semir-
ing).The usage of 𝑥 in 𝐵 is internalised as 𝑟 in the binder.The
grade 𝑠 is arbitrary. 𝜆𝑖 introduces functions. The usage of 𝑥
in 𝑡 and 𝐵 is described by grades 𝑠 and 𝑟 which are then cap-
tured in the binder. 𝜆𝑒 shows that to eliminate a function
through application, the resources used to form the argu-
ment must be scaled by the amount specified in the binder.

Graded binders alone do not allow us to consider that dif-
ferent subparts of a term might be used in different ways,
e.g., computing the length of a list ignores the elements, and
projecting from a pair discards one component. We there-
fore introduce a gradedmodality, which allows us to capture
the notion of local inspection on data, and allows usage in-
formation to be internalised to types. Our modality is in the
style of Orchard et al. [22], but is double-indexed, allowing
us to capture usage information at both the computational
and type levels. The type former rule (□) for graded modal
types is straightforward. The □𝑖 rule shows that we form a
value □𝑡 of type □(𝑠,𝑟 )𝐴 by scaling the grades required to
form 𝑡 (of type 𝐴) by 𝑠 and 𝑟 , and providing these at the
subject and subject-type levels, respectively. Finally, the □𝑒

rule shows that to eliminate a value of type□(𝑠,𝑟 )𝐴, we need
to say how to form a value under an assumption of type 𝐴
that can be used with 𝑠-usage in the subject, and 𝑟 -usage
in the subject’s type. Combining graded binders and graded
modalities makes for a highly expressive system, allowing
precise usage information on compound data.
Figure 2 shows how we define a projection function.

3 Discussion
There has been a recent resurgence in linear types, e.g., with
linearity influencing the borrowing system of Rust [3], work
to integrate linearity into Haskell via a grading-style ap-
proach [4], and session types bringing linearity into the fo-
cus of everyday programming [13].Thus, now is a good time
to bring dependent types more clearly into the linear types
story. This work constitutes a step towards a dependently-
typed languagewith comprehensive resource tracking. Rather
than biasing towards the computational level, we advance
the start-of-the-art via quantitative tracking at all layers.
This is work in progress and we are developing an im-

plementation (called Gerty). Further work is to add equality
types (in the style of [21]), and coproducts and the resulting
control-flow analysis. Our aim is to enable a new generation
of programming languages and proof assistants that put ex-
pressive resource reasoning at programmers’ fingertips.

proj1 : (𝑎 :(0,2) Type) (𝑏 :(0,1) Type) (𝑥 :(1,1) (□(1,0)𝑎, □(0,0)𝑏))
→ let (□𝑙,□𝑟 ) = 𝑥 in𝑎

proj1 𝑎 𝑏 𝑥 = let (□𝑙,□𝑟 ) = 𝑥 in 𝑙

Figure 2. GRtt projection function
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