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Abstract
Dependent type systems are powerful tools to eliminate bugs
from programs. Unlike other systems of formal methods, de-
pendent type systems can re-use themethodology and syntax
that functional programmers are already familiar with for
the construction of formal proofs. However, implementa-
tions of these languages still have substantial usability issues
arising from the conservative equality commonly used in
intensional type theories, which can manifest as confusing
error messages. In this paper we show how to take a full-
spectrum dependently typed language and optimistically
delay some equality checking until runtime. The advantage
of our method is clear runtime error messages supported by
blame that pinpoints the exact source of failure.
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1 Introduction
Programming is an error-filled process. While different for-
mal methods approaches can make some error rare or im-
possible, they burden programers with complex additional
syntax and semantics that can make them hard to work
with. Dependent type systems offer a simpler approach. In
a dependent type system, proofs and invariants can borrow
from the syntax and semantics already familiar to functional
programmers.
This promise of dependent types in a practical program-

ming language has inspired research projects for decades.
Several approaches have now been explored. The full-
spectrum approach is a popular and parsimonious approach
that allow computation to behave the same at the term and
type level [Augustsson 1998; Brady 2013; Norell 2007; Sjöberg
et al. 2012]. While this approach offers tradeoffs, it seems to
be the most predictable from the programmer’s perspective.
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For instance, dependent types can prevent an out-of-
bounds error when indexing into a length indexed list. The
following type checks in virtually all full-spectrum depen-
dent type systems

Bool : ∗,
Nat : ∗,
Vec : ∗ → Nat→ ∗,
add : Nat→ Nat→ Nat,

rep : (𝐴 : ∗) → 𝐴→ (𝑥 : Nat) → Vec𝐴𝑥,

head : (𝐴 : ∗) → (𝑥 : Nat) → Vec𝐴 (add 1𝑥) → 𝐴

⊢ 𝜆𝑥.head Bool𝑥 (rep Bool true (add 1𝑥)) : Nat→ Bool

We are sure head never inspects an empty list be-
cause the rep function will always return a list of length
1 + 𝑥 . In a more polished implementation many argu-
ments would be implicit and the above could be written
as 𝜆𝑥.head (rep true (1 + 𝑥)) : Nat→ Bool.
Unfortunately, dependent types have yet to see wide-

spread industrial use. Programmers often find dependent
type systems difficult to learn and use. One of the reasons
for this difficulty is that conservative assumptions about
equality create subtle issues for users, and lead to some of
the confusing error messages these languages are known to
produce [Eremondi et al. 2019a].
The following will not type check in any conventional

system with user defined addition,

�⊢𝜆𝑥 .head Bool𝑥 (rep Bool true (add𝑥 1)) : Nat→ Bool

While “obviously” 1 + 𝑥 = 𝑥 + 1, in the majority
of dependently typed programming languages, add 1𝑥 ≡
add𝑥 1 is not a definitional equality. This means a term
of type Vec (add 1𝑥) cannot be used where a term of type
Vec (add𝑥 1) is expected. Usually when dependent type sys-
tems encounter situations like this, they will give a type error
and prevent evaluation. If the programmer made a mistake in
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the definition of addition such that add 1𝑥 �= add𝑥 1, no hints
are given to correct the mistake. This increase of friction and
lack of communication are key reasons that dependent types
systems are not more widely used.
Instead why not sidestep static equality? We could as-

sume the equalities hold and discover a concrete witness of
inequality as a runtime error. Assuming there was a mistake
in addition, we could instead provide a runtime error that
gives an exact counter example. For instance, if the add func-
tion incorrectly computes add 8 1 = 0 the above function will
“get stuck” on the input 8. If that application is encountered
at runtime we can give the error add 1 8 = 9�=0 = add 8 1, a
message that would have been the perfect type error. There
is some evidence that specific examples like this can help
clarify the type error messages in OCaml [Seidel et al. 2016]
and there has been an effort to make refinement type error
messages more concrete in other systems like Liquid Haskell
[Hallahan et al. 2019].

Runtime type checking leads to a different workflow than
traditional type systems. Instead of type checking first and
only then executing the program, execution and type check-
ing can both inform the programmer. Users can still be
warned about uncertain equalities, but the warning need
not block the flow of programming. Since the user can grad-
ually correct their program as errors surface, we call this
workflow gradual correctness.

Additionally, our approach avoids fundamental issues of
definitional equality. No system will be able to statically
verify every “obvious” equality for arbitrary user defined data
types and functions, since general program equivalence is
famously undecidable. By weakening the assumption that all
equalities be decided statically, we can experiment with other
advanced features without arbitrarily committing to which
equalities are acceptable. Finally, we expect this approach to
equality is a prerequisite for other desirable features such
as a foreign function interface, runtime proof search, and a
lightweight ability to test dependent type specifications.

Though gradual correctness is an apparently simple idea,
there are several subtle issues that must be dealt with. While
it is easy to check ground natural numbers for equality,
even simply typed functions have undecidable equality. This
means that we cannot just check types for equality at ap-
plications of higher order functions. Dependent functions
mean that equality checks may propagate into the type level.
Simply removing all type annotations will mean there is not
enough information to construct good error messages. We
are unaware of research that directly handles all of these
concerns.
We solve these problems with a system of 2 dependently

typed languages connected by an elaboration procedure.

• The surface language, a conventional full-spectrum
dependently typed language (section 2)
– the untyped syntax is used directly by the programer

Figure 1. Architecture

– the type theory is introduced to make formal com-
parisons

• The cast language, a dependently typed language with
embedded runtime checks (section 3)
– will actually be run
– intended to be invisible to the programer
• An elaboration procedure that transforms untyped sur-
face syntax into checked cast language terms (section
4)

The programmer uses the untyped syntax of the surface
language to write programs that they intend to typecheck in
the conventional dependently typed surface language. Pro-
grams that fail to typecheck under the conservative type
theory of the surface language, are elaborated into the cast
language. These cast language terms act exactly as typed sur-
face language terms would, unless the programmer assumed
an incorrect equality. If an incorrect equality is encountered,
a clear runtime error message is presented against the static
location of the error, with a counter example.

Our contributions are
• Metatheoretic properties of the cast language: culmi-
nating in a weakened form of type soundness1, we call
cast soundness (section 3)
• Metatheoretic properties of elaboration (section 4)
• A proposal of how to extend the system with data
(section 5)
• Formalized Coq proofs2 of the type soundness of the
surface language, and cast soundness of the cast lan-
guage
• A prototype implementation3

2 Surface Language
In an ideal world programmers wouldwrite perfect codewith
perfectly proven equalities. The surface language models
this ideal, but difficult, system. Thus the surface language
enforces definitional equality, and is a standard well behaved
core calculus. We intend for programmers to "think" in the
surface language and hope the machinery of later sections

1well typed programs will not “get stuck”
2https://github.com/qcfu-bu/dtest-coq
3https://github.com/marklemay/dDynamic
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source labels,
ℓ

variable contexts,
Γ F ♢ | Γ, 𝑥 : 𝑀
expressions,
𝑚,𝑛,ℎ,𝑀, 𝑁,𝐻 F 𝑥 variable

| 𝑚 ::ℓ 𝑀 annotation
| ★ type universe
| (𝑥 : 𝑀ℓ ) → 𝑁ℓ′ function type
| fun 𝑓 𝑥 ⇒𝑚 function
| 𝑚ℓ 𝑛 application

values,
v F 𝑥 | ★

| (𝑥 : 𝑀ℓ ) → 𝑁ℓ′

| fun 𝑓 𝑥 ⇒𝑚

Figure 2. Surface Language Pre-Syntax

𝑥 : 𝑀 ∈ Γ
Γ ⊢ 𝑥−→: 𝑀

var-ty

Γ ⊢
Γ ⊢ ★−→: ★

★-ty

Γ ⊢𝑚←−: 𝑀 Γ ⊢ 𝑀←−: ★
Γ ⊢𝑚 ::ℓ 𝑀−→: 𝑀

: : -ty

Γ ⊢ 𝑀←−: ★ Γ, 𝑥 : 𝑀 ⊢ 𝑁←−: ★
Γ ⊢ (𝑥 : 𝑀) → 𝑁−→: ★

Π-ty

Γ ⊢𝑚−→: (𝑥 : 𝑁 ) → 𝑀 Γ ⊢ 𝑛←−: 𝑁
Γ ⊢𝑚𝑛−→: 𝑀 [𝑥 B 𝑛]

Π-app-ty

Γ ⊢𝑚−→: 𝑀 Γ ⊢ 𝑀 ≡ 𝑀 ′ : ★
Γ ⊢𝑚←−: 𝑀 ′

conv

Γ, 𝑓 : (𝑥 : 𝑁 ) → 𝑀,𝑥 : 𝑁 ⊢𝑚←−: 𝑀
Γ ⊢ fun 𝑓 𝑥 ⇒𝑚←−: (𝑥 : 𝑁 ) → 𝑀

Π-fun-ty

Figure 3. Surface Language Bidirectional Typing Rules

reinforces an understanding of the surface type system, while
being transparent to the programmer.
The surface language presented here is a minimal inten-

sional dependent type theory. We allow some programmatic
features, since we hope to target functional programmers
who are not type theory experts. The language allows general
recursion, since general recursion is useful for general pur-
pose functional programming. It also supports type-in-type,
since we believe it simplifies the system for programmers
and makes the metatheory slightly easier.

The pre-syntax can be seen in figure 2. Location data ℓ is
marked at every position in syntax where the type of a term
may be contradicted by the type expected at that position.
When unnecessary the location information ℓ will be left
implicit.

The surface language supports bidirectional type-
checking over the pre-syntax with the rules in figure 3. Bidi-
rectional type-checking is a form of lightweight type infer-
ence, and strikes a good compromise between the needed
type annotations and the simplicity of the theory. This is
accomplished by breaking typing judgments into 2 forms:

• Inference judgments where type information propa-
gates out of a term, −→: in our notation.
• And Checking judgments where a type is checked
against a term,←−: in our notation.

Except for the features already noted, our bidirectional rules
are standard.
The language has type soundness, well typed terms will

never “get stuck” in the surface language. This can be shown
by generalizing from the bidirectional system to a corre-
sponding type assignment system. The type assignment sys-
tem can be shown sound using a progress and preservation
style proof. The key is to show that computation is confluent
and use that computation to generate the definitional equal-
ity relation. This allows definitional equality to distinguish
constructors while still being easy to prove an equivalence.
As usual, computation can be shown confluent using parallel-
reductions [Takahashi 1995]. These techniques are known
(a similar proof is in [Sjöberg et al. 2012]), but we want to
call attention to this style of proof as especially elegant and
relatively easy to work with. We have mechanized the type
soundness of the type assignment system (without location
data) in Coq. Type checking is undecidable because of our
addition of general recursion and type-in-type. However,
since the user is not expected to type-check their program
directly this should not cause any issues in practice.

Unfortunately, the system is logically unsound (every type
is trivially inhabited with recursion), since our language
attempts to be more oriented to programs than proofs. We
expect this is acceptable.
It might seem restrictive that the surface language only

supports dependent recursive functions. However, this is ex-
tremely expressive: church style data can be encoded, as can
calculus of construction style predicates, recursion can simu-
late induction, and type-in-type allows large elimination (see
[Cardelli 1986] for examples). This is still inconvenient, so
we have implemented dependent data in our prototype. We
suggest ways dependent data could be added to the theory
in Section 4.
It should be noted that similar systems have been stud-

ied going back to [Martin-Löf 1972] before type-in-type
was known to be unsound. The semantics was further ex-
plored in [Cardelli 1986] and an early bidirectional type-
checking algorithm for a similar language is specified in
[Coquand 1996]. Cayenne [Augustsson 1998], a Haskell-like
language, combined dependent types with type-in-type and
non-termination. It was more recently explored in the con-
text of call by value evaluation in [Jia et al. 2010] and [Sjöberg
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variable contexts,
𝐻 F ♢ | 𝐻, 𝑥 : 𝐴
expressions,
𝑎, 𝑏,𝐴, 𝐵 F 𝑥

| 𝑎 ::𝐴,ℓ,𝑜 𝐵 cast
| ★

| (𝑥 : 𝐴) → 𝐵

| fun 𝑓 𝑥 ⇒ 𝑏

| 𝑏 𝑎

observations,
o F . | 𝑜.𝑎𝑟𝑔 function type-arg

| 𝑜.𝑏𝑜𝑑 [𝑎] function type-body

Figure 4. Cast Language Pre-Syntax

et al. 2012]. Though not novel, we believe our Coq proof to
be the clearest formal exposition to date.

3 Cast Language
The cast language is a version of the surface language that
supports runtime checks. These runtime checks remember
the sources of potential inequalities and what observation is
needed to witness them. Observations can be refined over
evaluation. The cast language has its own type system to
ensure that error information is maintained consistently. To
avoid confusion we will refer to terms that type according to
the cast language type system as well-cast. If a term that is
well-cast “gets stuck” there will always be enough informa-
tion to blame a source location with a witness of inequality.
The pre-syntax for the cast can be seen in figure 4. Ev-

ery questionable equality records a source location where it
was asserted and a concrete observation that would witness
inequality. Unlike the surface language, locations can only
appear under casts. In addition to the intended type, casts
also record the type of the underlying term.

The cast language supports its own type assignment sys-
tem (figure 5). The system ensures that computation will not
get stuck without enough information for errors.
Values are specified by judgments in (figure 6). They are

standard except that casts of values that cannot step are also
considered values. Small steps are listed in figure 7. They are
standard for call-by-value except that casts can distribute
over application, and casts can reduce when both types are★.
We deal with higher order functions by distributing function
casts around applications. If an application happens to a cast
of function type, the argument and body cast is separated
and the argument cast is swapped. For instance in(

(𝜆𝑥 ⇒ 𝑥&&𝑥) ::𝐵𝑜𝑜𝑙→𝐵𝑜𝑜𝑙,ℓ,. 𝑁𝑎𝑡 → 𝑁𝑎𝑡
)

7
⇝

(
(𝜆𝑥 ⇒ 𝑥&&𝑥)

(
7 ::𝑁𝑎𝑡,ℓ,.𝑎𝑟𝑔 𝐵𝑜𝑜𝑙

) )
::𝐵𝑜𝑜𝑙,ℓ,.𝑏𝑜𝑑 [7] 𝑁𝑎𝑡

⇝
( (

7 ::𝑁𝑎𝑡,ℓ,.𝑎𝑟𝑔 𝐵𝑜𝑜𝑙
)

&&
(
7 ::𝑁𝑎𝑡,ℓ,.𝑎𝑟𝑔 𝐵𝑜𝑜𝑙

) )
::𝐵𝑜𝑜𝑙,ℓ,.𝑏𝑜𝑑 [7] 𝑁𝑎𝑡

𝑥 : 𝐴 ∈ 𝐻
𝐻 ⊢ 𝑥 : 𝐴

𝑣𝑎𝑟 − 𝑡𝑦

𝐻 ⊢ 𝑎 : 𝐴 𝐻 ⊢ 𝐴 : ★ 𝐻 ⊢ 𝐵 : ★
𝐻 ⊢ 𝑎 ::𝐴,ℓ,𝑜 𝐵 : 𝐵

: : -ty

𝐻 ⊢
𝐻 ⊢ ★ : ★

★-ty

𝐻 ⊢ 𝐴 : ★ 𝐻, 𝑥 : 𝐴 ⊢ 𝐵 : ★
𝐻 ⊢ (𝑥 : 𝐴) → 𝐵 : ★

Π-ty

𝐻, 𝑓 : (𝑥 : 𝐴) → 𝐵, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵
𝐻 ⊢ fun 𝑓 𝑥 ⇒ 𝑏 : (𝑥 : 𝐴) → 𝐵

Π-fun-ty

𝐻 ⊢ 𝑏 : (𝑥 : 𝐴) → 𝐵 𝐻 ⊢ 𝑎 : 𝐴
𝐻 ⊢ 𝑏 𝑎 : 𝐵 [𝑥 B 𝑎] Π-app-ty

𝐻 ⊢ 𝑎 : 𝐴 𝐻 ⊢ 𝐴 ≡ 𝐴′ : ★
𝐻 ⊢ 𝑎 : 𝐴′

conv

Figure 5. Cast Language Type Assignment Rules

★Val
★-Val

(𝑥 : 𝐴) → 𝐵 Val
Π-Val

fun 𝑓 𝑥 ⇒ 𝑏 Val
Π-fun-Val

𝑎 Val 𝐴 Val 𝐵 Val
𝑎�=★

𝑎�= (𝑥 : 𝐶) → 𝐶 ′

𝑎 ::𝐴,ℓ𝑜 𝐵 Val
: : -Val

Figure 6. Cast Language Values

if evaluation gets stuck on && and we can blame the argu-
ment of the cast for equating𝑁𝑎𝑡 and 𝐵𝑜𝑜𝑙 . This is analogous
to the swapping of blame parity in higher order contract sys-
tems [Findler and Felleisen 2002] and gradual type systems
[Wadler and Findler 2009].
The body casts record the symbolic arguments so if the

function is not simply typed there is enough information to
give a good error. For instance in the .𝑏𝑜𝑑 [7] observation.

Because casts can be embedded inside of casts, types them-
selves need to normalize and casts need to simplify. Since our
theoretical language has one universe of types, type casts
only need to simplify themselves when a term of type ★ is
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𝑎Val
(fun 𝑓 𝑥 ⇒ 𝑏) 𝑎⇝ 𝑏 [𝑓 B fun 𝑓 𝑥 ⇒ 𝑏, 𝑥 B 𝑎]

𝑏 Val 𝑎Val(
𝑏 ::(𝑥 :𝐴1)→𝐵1,ℓ,𝑜 (𝑥 : 𝐴2) → 𝐵2

)
𝑎⇝(

𝑏 𝑎 ::𝐴2,ℓ,𝑜.𝑎𝑟𝑔 𝐴1
)

::𝐵1 [𝑥B𝑎::𝐴2,ℓ,𝑜.𝑎𝑟𝑔𝐴1],ℓ,𝑜.𝑏𝑜𝑑 [𝑎] 𝐵2 [𝑥 B 𝑎]
𝑎Val

𝑎 ::★,ℓ,𝑜 ★⇝ 𝑎

𝑎⇝ 𝑎′

𝑎 ::𝐴,ℓ,𝑜 𝐵⇝ 𝑎′ ::𝐴,ℓ,𝑜 𝐵

𝑎Val 𝐴⇝ 𝐴′

𝑎 ::𝐴,ℓ,𝑜 𝐵⇝ 𝑎 ::𝐴′,ℓ,𝑜 𝐵

𝑎Val 𝐴Val 𝐵⇝ 𝐵′

𝑎 ::𝐴,ℓ,𝑜 𝐵⇝ 𝑎 ::𝐴,ℓ,𝑜 𝐵′

𝑏 ⇝ 𝑏 ′

𝑏 𝑎⇝ 𝑏 ′ 𝑎
𝑏 Val 𝑎⇝ 𝑎′

𝑏 𝑎⇝ 𝑏 𝑎′

Figure 7. Cast Language Small Step

Blame ℓ 𝑜
(
𝑎 ::(𝑥 :𝐴)→𝐵,ℓ,𝑜 ★

)
Blame ℓ 𝑜

(
𝑎 ::★,ℓ,𝑜 (𝑥 : 𝐴) → 𝐵

)
Blame ℓ 𝑜 𝑎

Blame ℓ 𝑜
(
𝑎 ::𝐴,ℓ′,𝑜′ 𝐵

)
Blame ℓ 𝑜 𝐴

Blame ℓ 𝑜
(
𝑎 ::𝐴,ℓ′,𝑜′ 𝐵

)
Blame ℓ 𝑜 𝐵

Blame ℓ 𝑜
(
𝑎 ::𝐴,ℓ′,𝑜′ 𝐵

)
Blame ℓ 𝑜 𝑏

Blame ℓ 𝑜 (𝑏 𝑎)
Blame ℓ 𝑜 𝑎

Blame ℓ 𝑜 (𝑏 𝑎)

Figure 8. Cast Language Blame

cast to ★. For instance,(
(𝜆𝑥 ⇒ 𝑥) ::(𝐵𝑜𝑜𝑙→𝐵𝑜𝑜𝑙) ::★,ℓ,.𝑎𝑟𝑔★,ℓ,. 𝑁𝑎𝑡 → 𝑁𝑎𝑡

)
7

⇝ ((𝜆𝑥 ⇒ 𝑥) ::𝐵𝑜𝑜𝑙→𝐵𝑜𝑜𝑙 𝑁𝑎𝑡 → 𝑁𝑎𝑡) 7
⇝

(
(𝜆𝑥 ⇒ 𝑥)

(
7 ::𝑁𝑎𝑡,ℓ,.𝑎𝑟𝑔 𝐵𝑜𝑜𝑙

) )
::𝐵𝑜𝑜𝑙,ℓ,.𝑏𝑜𝑑 [7] 𝑁𝑎𝑡

⇝
( (

7 ::𝑁𝑎𝑡,ℓ,.𝑎𝑟𝑔 𝐵𝑜𝑜𝑙
) )

::𝐵𝑜𝑜𝑙,ℓ,.𝑏𝑜𝑑 [7] 𝑁𝑎𝑡

In addition to small step and values we also specify blame
judgments in figure 8. Blame tracks the information needed
to create a good error message and is inspired by the many
systems of blame tracking. The first 2 rules of the blame judg-
ment witness concrete type inequalities. With only depen-
dent functions and universes these are the only inequalities

that can be witnessed. The rest of the blame rules extract
concrete witnesses from larger terms.

The cast language supports a weaker form of type sound-
ness. ♢ ⊢ 𝑐 : 𝐶 implies that for any 𝑐 ′, 𝑐 ⇝∗ 𝑐 ′, if Stuck 𝑐 ′
then Blame ℓ 𝑜 𝑐 ′ where Stuck 𝑐 ′ means 𝑐 ′ is not a value
and 𝑐 ′ does not step. A well cast term (in an empty con-
text) will never get stuck without a location to blame and
an observation that witnesses it. We will refer to this as cast
soundness to distinguish it from the other types systems
already presented. Cast soundness follows from a progress
and preservation-like proof:
• The (unlisted) rule for definitional equality is gener-
ated by a system of parallel reductions.
– Dince the parallel reductions are confluent, defini-
tional equality is an equivalence.

– Definitional equality can distinguish between head
constructors.

• The cut lemma holds because of this
• Cast-preservation holds because of this
• A cast version of the canonical forms lemma holds
– If ♢ ⊢ 𝑐 : 𝐶 , and 𝑐 Val and 𝐶 ≡ ★ then either: 𝑐 is ★,
𝑐 is (𝑥 : 𝐴) → 𝐵 for some 𝐴, 𝐵, or Blame ℓ 𝑜 𝑐 for
some ℓ , 𝑜

– If ♢ ⊢ 𝑐 : 𝐶 , and 𝑐 Val and 𝐶 ≡ (𝑥 : 𝐴) → 𝐵 then
either: 𝑐 is fun 𝑓 𝑥 ⇒ 𝑏, or 𝑐 is𝑏 ::𝐶,ℓ,𝑜 (𝑥 : 𝐴2) → 𝐵2,
with 𝐶 Val, 𝑏 ′Val, (𝑥 : 𝐴2) → 𝐵2 ≡ (𝑥 : 𝐴) → 𝐵

We have formalized these proofs (without location data) in
our Coq development.

Because of the conversion rule and non-termination, type-
checking is undecidable. Since the user will not type-check
against this system directly we consider this acceptable.

As in the surface languages, the cast language is logically
unsound.

Just as there are many different flavors of statically typed
equality, there are also many possible choices to enforce
runtime equality. We have outlined the minimal possible
checking to support cast soundness. However, we suspect
that more aggressive checking may be preferable in practice,
especially in the presence of data types.

It should be noted that unlike static type-checking, these
runtime checks have runtime costs. Though pathological, in
the worst case a cast assumption alone may cause nonter-
mination at runtime. It would be relatively easy to remove
the casts of definitionally equal terms, reducing the runtime
costs of terms that type-check in the surface language. Addi-
tionally if non-definitional equalities are proven elsewhere
the corresponding casts can be removed, and this is a feature
we hope to support in future work.

4 Elaboration
Using the cast language manually would be cumbersome and
complicated. To avoid this we have an elaboration procedure
that translates (possibly untyped) terms from the surface

5



Conference’17, July 2017, Washington, DC, USA Mark Lemay, Qiancheng Fu, and Hongwei Xi

𝑥 : 𝐴 ∈ 𝐻
𝐻 ⊢ Elab𝑥 𝑥−→: 𝐴

𝐻 ⊢
𝐻 ⊢ Elab ★ ★−→: ★

𝐻 ⊢ Elab𝑀𝐴←−:ℓ,. ★ 𝐻, 𝑥 : 𝐴 ⊢ Elab 𝑁 𝐵←−−:ℓ′,.★
𝐻 ⊢ Elab ((𝑥 : 𝑀ℓ ) → 𝑁ℓ′) ((𝑥 : 𝐴) → 𝐵) −→: ★

𝐻 ⊢ Elab𝑚𝑏−→: 𝐶 𝐶 ≡ (𝑥 : 𝐴) → 𝐵 𝐻 ⊢ Elab 𝑛 𝑎←−−−−:ℓ,.𝑎𝑟𝑔 𝐴
𝐻 ⊢ Elab (𝑚ℓ 𝑛) (𝑏 𝑎) −→: 𝐵 [𝑥 B 𝑎]

𝐻 ⊢ Elab𝑀𝐴←−:ℓ . ★ 𝐻 ⊢ Elab𝑚𝑎←−:ℓ,.𝐴
𝐻 ⊢ Elab (𝑚 ::ℓ 𝑀) 𝑎−→: 𝐴

𝐻 ⊢ Elab𝑚𝑎−→: 𝐴
𝐻 ⊢ Elab𝑚

(
𝑎 ::𝐴,ℓ,𝑜 𝐴′

)←−−:ℓ,𝑜 𝐴′

𝐻, 𝑓 : (𝑥 : 𝐴) → 𝐵, 𝑥 : 𝐴 ⊢ Elab𝑚𝑏←−−−−−−−−:ℓ,𝑜.𝑏𝑜𝑑 [𝑥 ] 𝐵
𝐻 ⊢ Elab (fun 𝑓 𝑥 ⇒𝑚) (fun 𝑓 𝑥 ⇒ 𝑏) ←−−:ℓ,𝑜 (𝑥 : 𝐴) → 𝐵

Figure 9. Elaboration

language into the cast language. The elaboration procedure
maps well typed terms of the surface language into Cast
language terms that will not cause a blameable error. Terms
that do not type because of dubious type assumptions are
mapped with enough information to point out the original
source and a witnessing observation. For example,
⊢ (𝜆𝑥 ⇒ 7) ::ℓ B→ B elaborates to ⊢ (𝜆𝑥 ⇒ 7 ::N.ℓ,.𝑏𝑜𝑑 [𝑥 ]

B)
𝑓 : B → B ⊢ 𝑓ℓ7 : B elaborates to 𝑓 : B → B ⊢

𝑓
(
7 ::N.ℓ,.𝑎𝑟𝑔 B

)
: B

𝑓 : N→ B→ B ⊢ 𝑓ℓ7ℓ′3 : B elaborates to 𝑓 : N→ B→
B ⊢ 𝑓

(
7 ::N.ℓ,.𝑎𝑟𝑔 N

) (
3 ::N.ℓ′,.𝑎𝑟𝑔 B

)
: B

The elaboration procedure is written in a bidirectional
style (figure 9) that minimizes the annotations required
and propagates type inference in a sensible way. The rules
roughly correspond to the bidirectional rules of the surface
language. Because the application rule follows this bidirec-
tional style, we may need to determine if a type level com-
putation results in a function type. This computation causes
the relation to be undecidable, but is the only source of un-
decidability.

When interpreted as a procedure, this undecidability could
cause non-termination. Since the application requires that
the elaborated type of the function position reaches at least
weak head normal form. This only happens in pathological
cases. If we did not allow general recursion (and the non-
termination allowable by type-in-type), we suspect elabora-
tion would always terminate.

Unlike in gradual typing, we cannot elaborate arbitrary
untyped syntax. The underlying type of a cast needs to be
known so that a function type can swap its argument type at
application. For instance, 𝜆𝑥 ⇒ 𝑥 will not elaborate since the
intended type is not known. Though arbitrary syntax does
not elaborate, experimental testing suggests that a majority
of randomly generated terms can be elaborated, while only
a small minority of terms would type-check in the surface
language. The programmer can make any term elaborate if
they annotate the intended type. For instance, (𝜆𝑥 ⇒ 𝑥) ::
∗ → ∗ will elaborate.

We can show several desirable properties of elaboration,
1. Every term elaborated into the cast language is well-

cast.
a. for any Elab Γ𝐻 , then 𝐻 ⊢
b. for any 𝐻 ⊢ Elab𝑎𝑚−→: 𝐴, then 𝐻 ⊢ 𝑎 : 𝐴
c. for any 𝐻 ⊢ Elab𝑎𝑚←−−:ℓ𝑜 𝐴, then 𝐻 ⊢ 𝑎 : 𝐴

2. Every term typed by the bidirectional system elabo-
rates
a. if Γ ⊢, then there exists H such that Elab𝐻 Γ
b. if Γ ⊢ 𝑚−→: 𝑀 then there exists 𝑎 and 𝐴 such that
⊢ Elab𝑚𝑎−→: 𝐴

c. if Γ ⊢𝑚←−: 𝑀 and given ℓ then there exists 𝑎, 𝐴, and
𝑜 such that 𝐻 ⊢ Elab𝑎𝑚←−−:ℓ𝑜 𝐴

3. Blame never points to something that checked in the
bidirectional system
a. if ⊢𝑚−→: 𝑀 , and ⊢ Elab𝑚𝑎−→: 𝐴 , then for no 𝑎⇝∗ 𝑎′

will Blame ℓ 𝑜 𝑎′
4. Whenever an elaborated cast term evaluates, the cor-

responding surface term evaluates consistently
a. if 𝐻 ⊢ Elab𝑚𝑎−→: 𝐴, and 𝑎⇝∗ ★ then𝑚⇝∗ ★
b. if 𝐻 ⊢ Elab 𝑚𝑎−→: 𝐴, and 𝑎 ⇝∗ (𝑥 : 𝐴) → 𝐵 then

there exists N and M such that𝑚⇝∗ (𝑥 : 𝑁 ) → 𝑀

The last three guarantees are inspired by, but are less
composable than, the gradual guarantee [Siek et al. 2015] for
gradual typing.

The first property follows from mutual induction on elab-
oration judgments.
The 2nd property follows by mutual induction on the

bidirectional typing judgments.
Property 3 follows from elaborations preserving erasure

(figure 10), and the type soundness of the surface language.
Property 4 follows from elaborations preserving erasure.

5 Adding Data
In addition to the dependent functions already described,
our implementation supports dependent data types. While
adding data does not increase the theoretical power of the
language, it is essential for realistic programming. For in-
stance, the example in the introduction relies on the data
types Bool , Nat and Vec (figure 11). Surprisingly, our han-
dling of data requires significant modifications to the theory
described in sections 2-4.
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|𝑥 | = 𝑥

| ★ | = ★

|𝑚 ::ℓ 𝑀 | = |𝑚 |
| (𝑥 : 𝑀ℓ ) → 𝑁ℓ′ | = (𝑥 : |𝑀 |) → |𝑁 |

|𝑚ℓ 𝑛 | = |𝑚 | |𝑛 |
|fun 𝑓 𝑥 ⇒𝑚 | = fun 𝑓 𝑥 ⇒ |𝑚 |

|♢| = ♢
|Γ, 𝑥 : 𝐴| = |Γ |, 𝑥 : |𝐴|
|𝑎 ::𝐴,ℓ,𝑜 𝐵 | = |𝑎 |
| (𝑥 : 𝐴) → 𝐵 | = (𝑥 : |𝐴|) → |𝐵 |
|fun 𝑓 𝑥 ⇒ 𝑏 | = fun 𝑓 𝑥 ⇒ |𝑏 |
|𝑏 𝑎 | = |𝑏 | |𝑎 |

|𝐻, 𝑥 : 𝑀 | = |𝐻 |, 𝑥 : |𝑀 |

Figure 10. Erasure

data Bool : * {

| True : Bool

| False : Bool

};

data Nat : * {

| Z : Nat

| S : Nat -> Nat

};

data Vec : (A : *) -> Nat -> * {

| Nil : (A : *) -> Vec A Z

| Cons : (A : *) -> A -> (x : Nat)

-> Vec A x -> Vec A (S x)

};

Syntactic sugar expands decimal numbers in source code
into their unary representation.

Figure 11. Definitions of Common Data Types

Data in dependent type theories is often characterized
by how data can be used. For example, the functions used
in the introductory example all need to inspect data (figure
13). Our implementation eliminates data with case syntax
that branches off of every constructor. cases do not support
nested pattern matching.
The case construct allows large eliminations with arbi-

trary computations, supporting dependence on both the pa-
rameters of the type constructor and on the scrutinee itself.
Unless the elimination is simply typed the motive must be ex-
pressed explicitly. Since non-termination is already allowed,
we do not require data definitions to be strictly positive.
Recursive and mutually recursive data is available without
additional syntax.
We have proven type soundness of the surface language

with data (a similar system is described and proven in
[Sjöberg et al. 2012]).

add : Nat -> Nat -> Nat;

add x y = case x {

| Z => y

| S p => S (add x y)

};

rep : (A : *) -> A -> (x : Nat) -> Vec A x;

rep A a x = case x <x': Nat => Vec A x'> {

| Z => Nil A

| S p => Cons A a p (rep p)

};

head : (A : *) -> (x : Nat) -> Vec A (S x)

-> A;

head A x v = case v

< _ : Vec A' x' =>

case x'{

Z => Unit

S _ => A'

}

> {

| Nil _ => tt

| Cons A' a _ _ => a

};

Figure 12. Definitions of Functions Using Data

Γ ⊢ 𝑛−→: 𝐷 𝑃

data𝐷 Δ
{
| 𝑑𝑖 𝛩𝑖 → 𝐷𝑚𝑖

}
∈ Γ

Γ, 𝑦 : Δ, 𝑥 : 𝐷𝑦 ⊢ 𝑀←−: ★
∀𝑖 . Γ, 𝑧𝑖 : 𝛩𝑖 ⊢ ℎ𝑖←−: 𝑀 [𝑥 B 𝑑𝑧𝑖 , 𝑦 B 𝑚𝑖 ]

Γ ⊢ case𝑛 ⟨𝑥 : 𝐷 𝑦.𝑀⟩ of
{
| 𝑑𝑖𝑧𝑖 ⇒ ℎ𝑖

} −→: 𝑀 [
𝑥 B 𝑛,𝑦 B 𝑃

]
Where Δ and𝛩 represent telescope syntax. Lists of

variables and terms are 𝑥 ,𝑚 respectively. Contexts must be
extended to allow both data definitions and abstract data

definitions (for recursive data types).

Figure 13. Surface Language Elimination Typing

𝑎, 𝑏,𝐴, 𝐵,𝐶 F ...
| 𝐷 𝑎 data constructor
| 𝑇 𝑎 type constructor
| 𝑎 ::𝐴,𝐶 𝐵 cast
| 𝑎 ∼ℓ𝑜 𝑏 asserted equivalence

o F ... observation
| 𝑜.𝐴𝑝𝑝 [𝑎] application
| 𝑜.𝑇𝐶𝑜𝑛[𝑖] type constructor arg.
| 𝑜.𝐷𝐶𝑜𝑛[𝑖] data constructor arg.

Figure 14. Cast Language extended syntax (Selected)
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...

(fun 𝑓 𝑥 ⇒ 𝑏) ∼ℓ𝑜 (fun 𝑓 𝑥 ⇒ 𝑏 ′)
⇝

(
fun 𝑓 𝑥 ⇒ 𝑏 ∼ℓ𝑜.𝐴𝑝𝑝 [𝑥 ] 𝑏 ′

)
...

(𝑇 𝑎) ∼ℓ𝑜
(
𝑇 𝑏

)
⇝

(
𝑇 𝑎 ∼ℓ𝑜.𝑇𝐶𝑜𝑛 [𝑖 ] 𝑏

)
for each 𝑖 in the list

...

(𝐷 𝑎) ∼ℓ𝑜
(
𝐷 𝑏

)
⇝

(
𝐷 𝑎 ∼ℓ𝑜.𝐷𝐶𝑜𝑛 [𝑖 ] 𝑏

)
for each 𝑖 in the list

...(
𝑎 ::𝐴,𝐶 𝐴′

)
∼ℓ𝑜 𝑏 ⇝ 𝑎 ∼ℓ𝑜 𝑏

...

𝑎 ∼ℓ𝑜
(
𝑏 ::𝐵,𝐶 𝐵′

)
⇝ 𝑎 ∼ℓ𝑜 𝑏

Figure 15. Cast Language extended steps (Selected)

Unfortunately, adding cast support was surprisingly diffi-
cult. Since the motives are unrestricted and can depend on
multiple variables, it is possible for cast errors to occur in
indirect ways, and more type observations must be allowed.
Our implementation overcomes this by adding a new syn-
tactic construct that asserts untyped expressions are equal
(figure 14), this allows blame to directly point to the spe-
cific index of type or data constructors. This new assertion
syntax ignores cast checks to avoid getting stuck (figure 15).
This approach is harder to justify theoretically, but we con-
jecture that the system extended with data supports all the
properties we have proven for the functional fragment.
Adding general dependent data to full-spectrum depen-

dently typed systems is surprisingly subtle. Even simple
accounts add significant bookkeeping to the meta theory,
and introduce awkward issues like positivity checking. Con-
venient dependently typed languages should support param-
eterized data4, the syntax should support pattern matching
and the language should support implicit arguments. We
have decided to keep as simple an implementation as possi-
ble, for now, even though they are inconvenient to use.

6 Prior Work
6.1 Contract Systems, Gradual Types, and Blame
This paper has been influenced by the large amount of work
done on higher order contracts [Findler and Felleisen 2002],
4https://agda.readthedocs.io/en/v2.6.1.3/language/data-
types.html#parametrized-datatypes

gradual types [Garcia et al. 2016; Siek et al. 2015] [Garcia
et al. 2016; Siek et al. 2015] and especially blame [Ahmed
et al. 2017; Wadler 2015; Wadler and Findler 2009]. Most
work in those areas focuses on simply typed languages that
are not necessarily pure.

The implementation also takes inspiration from “Abstract-
ing gradual typing” [Garcia et al. 2016], where static evidence
annotations become runtime checks. Unlike some impres-
sive attempts to gradualize the polymorphic lambda calculus
[Ahmed et al. 2017], our system does not attempt to enforce
any parametric properties of the base language. It is unclear
if such a restriction would be desirable for a dependently
typed language in practice.

A system for gradual dependent types has been presented
in [Eremondi et al. 2019b]. That paper is largely concerned
with establishing decidable type checking via an approxi-
mate term normalization. However, that system retains the
definitional style of equality, so that it is possible, in principle,
to get 𝑣𝑒𝑐 (1 + 𝑥) ≠ 𝑣𝑒𝑐 (𝑥 + 1) as a runtime error.
While the gradual typing goals of mixing static cer-

tainty with runtime checks are similar to our work here,
the approach and details are different. Instead of trying to
strengthen untyped languages by adding types we take a
dependent type system and weaken its equalities. This leads
to different trade-offs in the design space. For instance, we
cannot support completely unannotated code, but we do not
need to complicate the type language with wildcards for
uncertainty. We think keeping the surface type language as
simple as possible is important for dependent type systems
that are already quite complicated.

6.2 Refinement Style Approaches
In this paper we have described a full-spectrum dependently
typed language. This means computation can appear uni-
formly in both term and type position. An alternative ap-
proach to full-spectrum dependent types is refinement type
systems. Refinement type systems restrict type dependency,
possibly to specific base types such as int or bool. It is then
straightforward to check these decidable equalities at run-
time in what has been coined the Hybrid Type Checking
methodology [Flanagan 2006].
A notable example is [Ou et al. 2004] which describes a

refinement system that limits predicates to base types.
A refinement type system with higher order features is

gradualized in [Zalewski et al. 2020] and builds on earlier
refinement type system work.

7 Future Work
There are several directions we would like to take this re-
search

• The prototype implementation should be improved
– While the runtime error contains much of the the-
oretical information to give a good error message

8
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our implementation could greatly improve the ac-
tual presentation of error messages by making them
match the example in the introduction.

– Ideally allow more direct use though a web interface
or through the language server protocol.

– The interface should give notifications when an un-
certain cast assumption is encountered.

– While we explicitly allow logically unsound pro-
grams, we think adding static analysis to verify the
parts of the code that are logically sound would be
a sensible improvement. This would allow proofs of
equality to remove runtime checks.

• Our implementation of data is missing several features
that functional programmers expect, such as pattern
matching. It would be good to know in which situa-
tions themotives and nested patterns can be elaborated
into a cast. We are hopeful that improvements in this
direction could be made.
• Given that this style of typing does not exclude all
errors, we would like to add mechanisms to better
support conventional testing, and hopefully symbolic
execution. We consider the work here as a prerequisite
to automated testing so that definitional equalities
can be ignored. An interesting further extension to
symbolic execution is runtime proof search.
• While our proofs show that our theory isn’t too un-
reasonable, our theory is very syntactic. We would
like to have a more semantic understanding of gradual
correctness that matches our intuitions about program
equality.
• While we have mechanized many parts of the metathe-
ory in Coq, we would like to fully mechanize every
proof listed in this paper.
• There has been recent work to combine dependent
type systems with effects [Ahman 2017]. A large hur-
dle for a practical implantation is the difficulty of deal-
ing with equality of effectful computations. We may
be able to use our cast methodology to avoid dealing
with effectfull equalities directly.
• Currently our theory does not enforce the paramet-
ric constraints that a functional programmer might
expect. Parametricity in dependent type systems has
been studied in theory [Bernardy et al. 2010]. But it is
still unclear what the most convenient form of para-
metricity is in practice. It would be good to at least
communicate this better to programmers. This topic
deserves more research generally.
• Finally, we would like to verify that programmers do
find this system helpful with a usability study. It would
be straightforward to compare programer performance
between the entire system and the surface language
alone.

8 Conclusion
In order for dependent types to fulfill their potential, wemust
continue to make them easier to use. Better error messages
and more flexible evaluation seem some of the necessary
ingredients of a widespread dependent language.
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