
Optics for generic declarative server APIs
Andre Videla

University of Strathclyde

1 Introduction
A considerable amount of engineering effort is continuously
deployed to implement and manage servers, and dependent
types provides us with the opportunity to improve the experi-
ence of creating and maintaining servers. Traditionally, they
are implemented by parsing a request and performing the
action that corresponds to the functionality advertised by the
documentation. We make progress in this area by providing
a new purely declarative library for servers that avoids errors
associated with the tight coupling that emerges from impera-
tive solutions. We use Idris2 [2], dependent types, and lenses
to achieve this goal and demonstrate how to implement and
extend server APIs with as little code as possible.

2 Declarative frameworks
A common tool for the modern software engineer work-
ing on a server is a framework to define and document its
API, we call those delcarative frameworks. They differ from
the traditional approach which consists in implementing
the server as a program that parses requests and sends re-
sponses. A declarative framework only describes incoming
and outgoing requests, with no bearing on the implemen-
tation. Contemporary declarative frameworks for servers
include Swagger [1], a very popular choice in the industry,
and Haskell’s Servant [4], the state of the art in declarative
server libraries. Swagger allows the programmer to define
APIs in a configuration language, and then generates docu-
mentation and source code for the API. Servant takes a more
embedded approach by defining the server’s APIs as a type
in Haskell and then requesting the programmer to provide
functions that implement the given API. We take a similar
approach to Servant but make use of dependent types to
unlock new abstractions through the relationship between
endpoints and lenses.

3 Server endpoints as resources
A web server can be characterised by its endpoints, each
endpoint describes what kind of input an HTTP [3] request
provides and what kind of response is sent from the server.
For our purposes, we are going to identify two operations:
querying the state of the server, and updating the state of the
server. We use HTTP verbs to declare what kind of operation
the request is performing, typically a GET request would
query the state, while a POST request would update the state
while carrying data through a request body.

Now, imagine an endpoint that returns a list of todo items
for a given user: GET todo/:user (:user is syntax for a url

capture). Using our librarywe can define this endpoint like so
: "todo" / Cap User / Returns (List Todo) Get. In this
one line we’ve defined the url path ("todo"), the url capture
(Cap User for :user), which kind of request we’re expecting
(GET or POST), and what kind of response the client expects (a
List Todo). We did this using an embedded DSL overloading
the / operator to construct values that describe endpoints.
Given this information , the client will see this endpoint as a
function User -> List Todo. But attempting to implement
this function as the server will result in unavoidable failure,
as there is no way to lookup which List Todo to return. The
intent of the server is to provide a view of its internal state,
in our particular case, the state is a dictionary storing Users
as keys and List Todo as values. In Idris this type is called
Map User (List Todo). Implementing our server while
using its state amounts to implementing the function with
the following type signature : User -> Map User (List
Todo) -> List Todo.

In addition to queries, servers also perform state update
operations. We represent these with a POST request which
carries a request body. For example, an endpoint that adds
a new todo item for a given user looks like this "todo" /
Cap User / Returns (List Todo) (Post Todo). Again
we can deduce the corresponding function that implements
this endpoint using our state: User -> Todo -> Map User
(List Todo) -> (List Todo, Map User (List Todo))

The new state is paired up with the response of the server
in order for the library to update its internal state. It is ex-
tremely common for servers to provide an API that allows
both querying and updating the state. In our library we call
those resources and we can refactor the previous two end-
points into a single one: "todo" / Cap User / Resource
Todo (List Todo).

To understand how a Resource is implemented, it is in-
formative to look at the type that describes APIs:

data Path : Type where
Ends : (returnType : Type) ->

Show returnType =>
(v : Verb) -> Path

Plain : String -> (ps : Path) -> Path
Capture : (name : String) ->

(t : Type) -> HasParser t =>
(ps : Path) -> Path

Split : List Path -> Path

A Path is a tree of path components which are either
Types or Strings, they can also embed a list of Paths which
describes endpoints with a common prefix.



Andre Videla

Given this definition, a Resource is nothing but an alias
for Split [Ends ret Get, Ends ret (Post val)] it
reprents two endpoints that terminate with a POST and GET
request.

4 Resources as lenses
In our previous example, we defined our server as a pair
of two endpoints that query and update the same resource.
If we place the two generated signatures side by side we
recognise a well-known pattern:
GET : User -> Map User (List Todo) -> List Todo
POST : User -> Todo -> Map User (List Todo) ->

(List Todo, Map User (List Todo))

If we abstract over the state and pack up our arguments
in pairs we obtain the less verbose signature:
GET : (args, state) -> resource
POST : (args, state) -> newValue ->

(newResource, state)

Which resembles the traditional definition of lenses [? ]!
As a reminder, a lens is a pair of functions parameterised
over the types a, b, s, t:
get : s -> a
set : s -> b -> t

That is, a resource r with state st, arguments args, up-
dated value nv, and a feedback value fv, is a lens:
set : (args, st) -> r
get : (args, st) -> nv -> (fv, st)

The signature of this lens is our API and its implemen-
tation is the implementation of our server. This guides us
toward our first key observation:

Every resource exposed by a server gives rise to
a lens.

5 API definitions using lenses
This result provides us with a new way to define web servers
and their API: as the composition of lenses. A server is but a
way to view and update a resource. In the following example,
we define an API for a home server that manages lights in a
home.
lights : Path
lights = "lights" / Resource (Double,Double)

This API features an endpoint lights which control the
intensity of two lights in the house using a Double. However
the current API forces us to update both lights in one go.
We would like to create endpoints like lights/kitchen and
lights/bedroom to change the intensity of each light. For
this we are going to compose our lights resource with two
lenses, one for each element of the pair:
kitchen = lights ~/ "kitchen" / Lens lensFst
bedroom = lights ~/ "bedroom" / Lens lensSnd

Here lensFst and lensSnd are the lenses accessing the
first and second element of a pair. The ~/ operator replaces
the Ends constructor by a new path using the given path com-
ponent as string (here kitchen and bedroom) and matching
lens for the previous return type.
We observe that those endpoints do not require any ad-

ditional implementation: Their implementation is given by
their lenses. This leads to our second key statement:

A server consists of a resource type, paired with
paths and lenses focusing on different parts of
that resource

This observation enables us to extend, refactor, and im-
plement any endpoint without writing any more code than
necessary. It is enough to describe our main resource and to
provide lenses that focus on specific parts of it.

6 Conclusion
Compared to Swagger our approach remains entirely inside
the language, ensuring that the code and its API do not get
out of sync. Compared to Servant, in addition to enabling
the extension of endpoints using lenses, having access to
first-class types enables various forms of meta-programming.
For example one can:

• Manipulate endpoints as values, for example operating
on each path component, or generating an endpoint
from a string.

• Manipulate APIs at runtime and serve them using the
implementation of their lenses.

• Enforce API properties, for example statically checking
that the server has no overlapping endpoints.

Some of those advancements have been implemented in
the Servis [6] project. Servis’ primary goal was to fix some
of the limitations of Servant due to Haskell not featuring
dependent types. Our library improves on Servis by exposing
the relationship between endpoints and lenses.
Our library does not say anything about concurrency,

two unrelated endpoints should be accessible concurrently,
but because of our implementation of state, we cannot serve
multiple clients at the same time.What’s more, servers do not
rely on their state being stored in memory, but use databases
to store and fetch data. An obvious improvement would be
to explain the relationship between the server’s API and the
database(s) it communicates with. Finally, error handling is
an important aspect of API design and our lens abstraction
does not say anything about it. It would be useful to talk
about those future developments with the community and
explore the place of dependent types in backend software
engineering.



Optics for generic declarative server APIs

References
[1] [n.d.]. . SmartBear. https://swagger.io
[2] Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice.

arXiv:2104.00480 [cs] (Apr 2021). http://arxiv.org/abs/2104.00480 arXiv:
2104.00480.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. 1999. Hypertext Transfer Protocol – HTTP/1.1. Number
RFC2616. RFC2616 pages. https://doi.org/10.17487/rfc2616

[4] Alp Mestanogullari, Sönke Hahn, Julian K. Arni, and Andres Löh.
2015. Type-level web APIs with Servant: an exercise in domain-specific

generic programming. In Proceedings of the 11th ACM SIGPLAN Work-
shop on Generic Programming. ACM, 1–12. https://doi.org/10.1145/
2808098.2808099

[5] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. 2017. Profunctor
Optics: Modular Data Accessors. The Art, Science, and Engineering of
Programming 1, 2 (Apr 2017), 7. https://doi.org/10.22152/programming-
journal.org/2017/1/7 arXiv: 1703.10857.

[6] Arian van Putten. 2016. Servis: A dependently typed DSL for web APIs.
https://github.com/arianvp/servis

https://swagger.io
http://arxiv.org/abs/2104.00480
https://doi.org/10.17487/rfc2616
https://doi.org/10.1145/2808098.2808099
https://doi.org/10.1145/2808098.2808099
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://github.com/arianvp/servis

	1 Introduction
	2 Declarative frameworks
	3 Server endpoints as resources
	4 Resources as lenses
	5 API definitions using lenses
	6 Conclusion
	References

