
Interactive Haskell Type Inference Exploration
Extended Abstract

Shuai Fu
Monash University

Tim Dwyer
Monash University

Peter J. Stuckey
Monash University

ACM Reference Format:
Shuai Fu, Tim Dwyer, and Peter J. Stuckey. 2021. Interactive Haskell
Type Inference Exploration: Extended Abstract. In Proceedings of
Type-Driven Development (TyDe’21). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

In the last few decades, we have witnessed many significant
advances in type-driven development. With type systems
supporting dependent types and linear types, programmers
may compose complex processes and structures purely in
types. While strong types are quite successful at stopping
erroneous programs from compiling, programmers can strug-
gle to navigate through modern type systems.

Modern Integrated Development Environments (IDEs) can
inform programmers of various information related to the
source code, such as program state, execution results, and test
status [Sulír et al., 2018]. However, when describing types
and relations between types, especially when the program
is in a state of type error, the IDE support is often minimal.
To understand the type errors, programmers are often stuck
with the traditional compile-time error messages in the form
of a red squiggly line or multiple pages of text inside a ter-
minal emulator. Studies find that text-based compiler error
messages are not effective for hunting down issues in code
[Barik et al., 2017, Becker et al., 2019].

We are currently developing and evaluating experimental
features for IDEs that we believe can help novice program-
mers investigate type errors in the Haskell language.

2 The chameleon system

The chameleon system is a constraint-based type system
and debugging interface for the Haskell language. An ear-
lier version of the chameleon system was developed in the
mid 2000s [Wazny, 2006]. It was conceived as a command-
line tool rather than integrated into an editor or IDE. We
have updated the chameleon system to use modern Haskell

TyDe’21, Sun 22 – Fri 27 August 2021, Virtual Event
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

libraries and replaced the legacy C++ type unification algo-
rithm with a Haskell implementation. We have also extended
the Haskell parser and error reporting heuristics to make it
suitable for use as a compiler service in a modern IDE (VS
Code). Although constraint-based type systems have not yet
gained a large audience, we find many of their advantages
(e.g., better localization and traceability of type errors) can
be amplified in the context of a graphic user interface. The
chameleon system consists of two parts: the chameleon type
debugger (2.1) and the interactive chameleon window (2.2).

2.1 Chameleon type debugger

The chameleon type debugger generates Constraint Han-
dling Rules (CHRs) [Fruhwirth, 2009] and constraints based
on reading the source program. It then consults the CHR
solver to determine whether a term or program can be prop-
erly typed. One novel idea from the original chameleon study
is, when it fails to compute the type of a specific term, we
try to reduce the constraint store to a minimal unsatisfiable
subset [Stuckey et al., 2003, Wazny, 2006]. This minimal un-
satisfiable subset narrows down the problem surface while
maintaining the locality of the error origin. The original
chameleon type debugger was developed and published in
2007. After the publication, the development stalled until
2020 – when we started work on the improved chameleon
system. Our work on this front focuses on transforming the
minimal unsatisfiable subset into type error analysis.

2.2 Interactive chameleon window

The interactive chameleon window is a type system user
interface and a set of tools we designed to complement the
chameleon type debugger. Acknowledging the limitations of
the text-based compiler error messages, we focus on error
message enhancement for type inference [Becker et al., 2019].
The techniques we employed include text rephrasing, in-situ
visualization, and interactive design. We present here three
features in the interactive chameleon window that can work
independently or in combination. These features are initially
designed to teach and learn the Haskell language, however,
we believe some features can benefit advanced Haskell users.

Type compare view. In a type error, the type compare view
lists all (typically two) alternative ways a term can be typed

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TyDe’21, Sun 22 – Fri 27 August 2021, Virtual Event Shuai Fu, Tim Dwyer, and Peter J. Stuckey

by ignoring one or more type rules. It then highlights the
relative places in the source code that contribute to this
alternative. The type compare view (see Fig. 1) does not make
biased assumptions about what the programmer thinks is
the proper type for a term. Instead of assuming a ‘canonical
type’ and a ‘wrong type’, we prompt the question to the
programmer to resolve.

Figure 1. A type error in chameleon type compare view.
In this case, the type error may be resolved in one of two
ways, either by changing the type definition of the vari-
able to String, or assigning the variable an Integer value.
Chameleon presents both possibilities as equal candidates.
Hovering over the types in the info pane (bottom-left and
bottom-right) highlights the corresponding code with the
matching colour.

Type Deduction View. We developed the type deduction
view to illustrate better the minimal unsatisfiable subset and
to unpack the type errors it entails. The type deduction view
consists of many deduction steps. Each deduction step is a
constraint inside the minimal unsatisfiable subset. The de-
duction steps are presented in the order in which unification
takes place. We link each deduction step to the relevant lo-
cations of source program. When the programmer inspect
one deduction step, the related locations are highlighted, and
the highlights change as the programmer navigate to the
next deduction step. From programmers’ perspective, it is
like breaking the type check into many small type checks,
which programmers can easily reason about and verify. The
challenge with the type deduction view is how to lower the
learning curve of the various UI elements and build muscle
memory for the interactive debugging process. For this, we
find using a mini-map that mirrors the in-text highlights as
step thumbnails is one of the more intuitive designs (see Fig.
2).

Figure 2. A sequence of screenshots of in type deduction
view. The programmer can click on each deduction step to
activate it. When activated, a deduction step is displayed in
light color, and relevant location(s) in this deduction step are
highlighted in the source code window.

Traffic Light Notation. Traffic light notation is a pictorial
view (see Fig. 3) of the Haskell type language. Traffic light
notation uses a dot to indicate simple types (e.g., Int) and
uses dot(s) in a rectangular box to indicate types with a type
constructor (e.g., Maybe Int). A similar idea was exercised
[Jung and Michaelson, 2000] and proven helpful in this con-
text.

Interactive Haskell Type Inference Exploration TyDe’21, Sun 22 – Fri 27 August 2021, Virtual Event

Figure 3. A list of common function types in traffic light
notation. We use slight different shades of the same color to
distinguish nested types like [[a]].

Note that the traffic light notation does not replace the text-
based type representation but instead offers a succinct view
when the textual counterpart starts to feel unwieldy. Some
examples include when the textual type signature is limited
by its vocabulary (see Fig. 4) , when showing less information
is helpful for beginners (see Fig. 5), or when the type itself is
monstrous (see Fig. 6).

(a) The GHC output for an error involving type parameter.

(b) The chameleon output for the same type error.

Figure 4. GHC may rename some type parameters dur-
ing the type inference. This behaviour often adds cognitive
overhead to understand the error message. In traffic light
notation, programmers can quickly identify that the term id
cannot be both an unary function type and a list type. The
fact that both types are polymorphic with a type parameter
‘a’ does not obscure the real error.

3 Work in progress

Many advantages of the outlined features are currently spec-
ulations by the authors. While we are ourselves Haskell pro-
grammers, we do not speak for the community. We are in the

Figure 5. Many teachers teach Haskell using an alterna-
tive Prelude module to avoid explaining the Foldable type
classes to beginners early on. In traffic light notation a list
type and a type with a Foldable instance show the same
shape. It allows teachers to teach fundamental concepts of
functional programming without hiding the high level ab-
stractions. The same goes for polymorphic numbers and
strings.

Figure 6. Debugging nested monadic code can frustrate
even Haskell veterans. Viewing from the lens of traffic light
notation, the error can be surprisingly clear.

process of running empirical studies to test how real Haskell
users perceive our innovations on real-world programming
tasks.

The chameleon system is designed and implemented for
Haskell 2010 standard without language extensions. We
are working on the support for common type extensions,
such as Generalised Algebraic Data Types (GADTs) and
existential types. While studies proposed and developed
constraint-based type systems that support various type
extensions[Sulzmann et al., 2007, Wazny, 2006], our project
largely interests in the usability and human-computer inter-
actions. For us, the challenge of bringing more type features
into play is how we communicate the ideas in a meaning-
ful way and guide the programmers efficiently out of type
dilemmas.

TyDe’21, Sun 22 – Fri 27 August 2021, Virtual Event Shuai Fu, Tim Dwyer, and Peter J. Stuckey

References

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler
Error Messages?. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE) (2017-05). 575–585. https://doi.org/10.1109/
ICSE.2017.59 ISSN: 1558-1225.

Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J.
Bouvier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDon-
ald, Peter-Michael Osera, Janice L. Pearce, and James Prather. 2019.
Compiler Error Messages Considered Unhelpful: The Landscape of
Text-Based Programming Error Message Research. In Proceedings of
the Working Group Reports on Innovation and Technology in Computer
Science Education (Aberdeen Scotland Uk, 2019-12-18). ACM, 177–210.
https://doi.org/10.1145/3344429.3372508

Thom Fruhwirth. 2009. Constraint Handling Rules. (2009). Cambridge
University Press.

Yang Jung and Greg Michaelson. 2000. A visualisation of polymorphic type
checking. 10, 1 (2000), 57–75. https://doi.org/10.1017/S0956796899003597

Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. 2003. Interactive
type debugging in Haskell. In Proceedings of the ACM SIGPLAN workshop
on Haskell - Haskell ’03 (Uppsala, Sweden, 2003). ACM Press, 72–83.
https://doi.org/10.1145/871895.871903

Martin Sulzmann, Gregory J. Duck, Simon Peyton-Jones, and Peter J. Stuckey.
2007. Understanding functional dependencies via constraint handling
rules. Journal of Functional Programming 17, 1 (2007), 83–129. https:
//doi.org/10.1017/S0956796806006137

Matúš Sulír, Michaela Bačíková, Sergej Chodarev, and Jaroslav Porubän.
2018. Visual augmentation of source code editors: A systematic mapping
study. Journal of Visual Languages & Computing 49 (2018), 46–59. https:
//doi.org/10.1016/j.jvlc.2018.10.001

Jeremy Richard Wazny. 2006. Type inference and type error diagnosis for
Hindley/Milner with extensions. University of Melbourne, PhD Thesis.

https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1017/S0956796899003597
https://doi.org/10.1145/871895.871903
https://doi.org/10.1017/S0956796806006137
https://doi.org/10.1017/S0956796806006137
https://doi.org/10.1016/j.jvlc.2018.10.001
https://doi.org/10.1016/j.jvlc.2018.10.001

	1 Introduction
	2 The chameleon system
	2.1 Chameleon type debugger
	2.2 Interactive chameleon window

	3 Work in progress
	References

