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Abstract
Libraries of generic operations on syntax trees with bind-
ers are emerging, and one of these is Allais et al.’s [2021]
datatype-generic library in Agda, which provides syntax-
generic constructions but not in a conventional form pre-
ferred by programmers. We port a core part of Allais et al.’s
library to our new datatype-generic framework, which uses
Agda’s elaborator reflection to reify generic constructions to
programs close to what programmers would write by hand.
We hope that this work will make syntax-generic libraries
such as Allais et al.’s more attractive, and stimulate discus-
sion on the development of generic libraries.

1 Introduction
When implementing embedded domain-specific languages
(DSLs), dependently typed programmers make use of the
host languages’ type systems to enforce properties of the
syntaxes. In particular, when the syntaxes have binders and
are typed, intrinsic typing has become a standard technique
to make the programs well scoped and typed [Kokke et al.
2020, Part 2]. Such syntaxes share similar type structures,
operations, and lemmas (with the simplest examples being re-
naming and substitution). Traditionally, programmers need
to somewhat tediously redefine the operations for every
distinct syntax. Recently, there have been generic libraries
providing constructions that can be specialised for a whole
family of syntaxes with binders [Allais et al. 2021; Fiore and
Szamozvancev 2022; Ahrens et al. 2022], although it remains
to be seen whether these libraries will be widely adopted.

We will focus on Allais et al.’s [2021] Agda library, which
treats syntax-generic programs as special cases of datatype-
generic programs [Gibbons 2007; Benke et al. 2003; Alten-
kirch and McBride 2003]. Their approach (recapped in Sec-
tion 2) is more or less standard in Agda: The syntax of a DSL
is specified as a ‘description’ d : Desc I (where I is the set of
the DSL types), from which a datatype Tm d of syntax trees
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is derived. There is a semantics operator that traverses a
syntax tree to compute a result; the operator is parametrised
by a Semantics record, which specifies what computation to
perform. The library provides various Semantics paramet-
rised by d, which act as syntax-generic programs, and can
be instantiated with semantics as operations on syntax trees
of DSLs that can be described within the Desc universe.
One potential problem that may prevent Allais et al.’s

library (and in general, libraries following the standard ap-
proach to datatype-genericity in Agda) from being widely
adopted is the lack of interoperability: Programmers using
Allais et al.’s library are restricted to using datatypes of the
form Tm d, which are rather different from the kind of nat-
ive datatypes that programmers would normally write; this
prevents access to other datatype-generic libraries (which
use their own universes instead of Desc), and makes lan-
guage and editor support for native datatypes (such as rep-
resentation optimisations [Brady et al. 2004] and interactive
case-splitting) less effective. The problem also arises for the
operations instantiated with semantics, which are not as
easy to work with as the hand-written versions (in particu-
lar when the definitions need to be inspected). To address
the problem (for datatype-generic libraries in general), the
present authors (together with Liang-Ting Chen) proposed
an Agda framework [Ko et al. 2022] which uses elaborator
reflection [Christiansen and Brady 2016] to reify generic con-
structions as native datatypes and functions close to hand-
written forms. With the framework, programmers can keep
the conventional programming style, and replace some of
the programs that had to be written by hand with similar-
looking ones automatically generated from generic libraries.

Here we report (in Section 3) a small but successful experi-
ment porting a core part of Allais et al.’s library to our frame-
work, allowing programmers to write datatypes of syntaxes
in conventional forms and then reify Allais et al.’s syntax-
generic operations as natural-looking functions. We plan to
give a demo at the workshop and show that our framework
can potentially make syntax-generic libraries such as Allais
et al.’s more attractive to programmers. Moreover, currently
there are noticeable limitations of our framework and of Al-
lais et al.’s library, which we hope will stimulate discussion
on how the development of (syntax-)generic libraries can
be pushed further (Section 4). Our Agda code is available at
https://github.com/Zekt/Generic-Scoped-Syntax.
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2 Allais et al.’s Approach
Before giving a simplified account of the user interface to
Allais et al.’s library, we present our running example: simply
typed 𝜆-calculus. Traditionally, DSL programmers would
manually define a datatype Lam in Figure 2, where variables
are represented as well scoped and typed de Bruijn indices,
defined by Var in Figure 1. Then the programmers would go
on and define operations on Lam (renaming, substitution,
printing, scope-checking, etc). One simplest example is the
rename function in Figure 2, which takes an environment 𝜌
represented as a function mapping variables in 𝛤 to variables
in 𝛥, and applies 𝜌 to all the variables in a term of type Lam.
Among the cases of rename, the lam case is more interesting:
as 𝜌 is pushed under the binder, it needs to be extended with
a case mapping the new variable z to ‘itself’ (since we are
renaming only free variables, whereas the new variable is
bound), and the old variables in 𝜌 should be incremented to
skip over the binder; this new environment for renaming the
body is computed by extend in Figure 1.
Allais et al. show that operations like rename can be im-

plemented generically for a family of syntaxes, and program-
mers need not redefine them for every new syntax as long
as the syntax has a ‘description’, which is an inhabitant of

data Desc (I : Set) : Set1

where I is the set of the types used in the syntax. Instead of
giving the definition of Desc, we only give a taste of what
descriptions look like by showing a description STLC of
simply typed 𝜆-calculus, whose details are not important:

data ‵STLC : Set where
‵App ‵Lam : Type→ Type→ ‵STLC

STLC : Desc Type
STLC = σ ‵STLC λ where
(‵App 𝜎 𝜏) → ‵X [] (𝜎 ‵→ 𝜏) (‵X [] 𝜎 (■ 𝜏))
(‵Lam 𝜎 𝜏) → ‵X (𝜎 :: []) 𝜏 (■ (𝜎 ‵→ 𝜏))

The point here is that descriptions capture the structure of
syntaxes as data, from which we can then compute types
and functions for the described syntaxes.
In place of native datatypes like Lam, DSL programmers

write descriptions like STLC and use a (fixed-point) operator

data Tm (d : Desc I ) : I → List I → Set where
var : Var i 𝛤 → Tm d i 𝛤
con : J d K (Scope (Tm d )) i 𝛤 → Tm d i 𝛤

to derive syntax datatypes like Tm STLC. Again the details
of Tm are not important. We only make a remark that the
Lam constructors other than var are encoded by a generic
constructor con here; the encoding could be disguised as
native constructors using pattern synonyms [Pickering et al.
2016], but only to an extent — for example, the encoding still
shows up during interactive case-splitting.

data Var : I → List I → Set where
z : Var i (i :: 𝛤 )
s : Var i 𝛤 → Var i (j :: 𝛤 )

extend : (∀ {i} → Var i 𝛤 → Var i 𝛥)
→ Var j (k :: 𝛤 ) → Var j (k :: 𝛥)

extend 𝜌 z = z
extend 𝜌 (s v) = s (𝜌 v)

Figure 1. Well scoped and typed de Bruijn indices

data Type : Set where
α : Type
_‵→_ : Type→ Type→ Type

data Lam : Type→ List Type → Set where
var : Var 𝜎 𝛤 → Lam 𝜎 𝛤

app : Lam (𝜎 ‵→ 𝜏) 𝛤 → Lam 𝜎 𝛤 → Lam 𝜏 𝛤

lam : Lam 𝜏 (𝜎 :: 𝛤 ) → Lam (𝜎 ‵→ 𝜏) 𝛤

rename : (∀ {𝜎}→ Var 𝜎 𝛤 → Var 𝜎 𝛥)
→ Lam 𝜏 𝛤 → Lam 𝜏 𝛥

rename 𝜌 (var x) = var (𝜌 x)
rename 𝜌 (app x y) = app (rename 𝜌 x) (rename 𝜌 y)
rename 𝜌 (lam x) = lam (rename (extend 𝜌) x)

Figure 2. Simply typed 𝜆-calculus and renaming

For datatypes of the form Tm d, Allais et al. provide a
generic traversal function

semantics : Semantics d V C
→ (∀ {j}→ Var j 𝛤 → V j 𝛥)
→ Tm d i 𝛤 → C i 𝛥

which is abstracted from the computation pattern of oper-
ations like rename. The type of the contents stored in the
environment and the type of the result are abstracted as
V and C respectively. The first argument of type

record Semantics (d : Desc I ) (V C : I → List I → Set) : Set

specifies the computation to be performed during the tra-
versal. For example, the renaming operation can be provided
generically (being parametrised by d) in the form

Renaming : (d : Desc I )→ Semantics d Var (Tm d)

with which we can specialise semantics to rename:

rename : (∀ {𝜎}→ Var 𝜎 𝛤 → Var 𝜎 𝛥)
→ Tm STLC 𝜏 𝛤 → Tm STLC 𝜏 𝛥

rename = semantics (Renaming STLC)

3 Reifying Syntax-Generic Operations
It is not particularly pleasant to program with Tm STLC
and rename defined in terms of semantics from Section 2,
because the (implementation) details of the generic library
would keep showing up in these definitions, complicating
subsequent constructions. Our approach is to regard the
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  defineFold

LamD : DataD

LamRenP : FoldP

rename : (∀ {σ} → Var σ Γ → Var σ Δ) 
→ Lam τ Γ → Lam τ Δ

User

Metaprograms
Renaming

SemP

LamRen :
Semantics LamD LamSyn Var Lam

LamSyn : Syntax LamD

Lam : Type → List Type → Set

Allais et al.’s 
library (ported)

Figure 3. How DSL programmers derive rename from Lam
using Allais et al.’s library ported to our framework

generic entities as residing at a ‘meta-level’, and use meta-
programs to perform partial evaluation and generate, at a dif-
ferent level, code specialised for specific syntaxes/datatypes
such as Lam. This process is conceptually straightforward in
Agda, because in functional settings, partial evaluation is just
normalisation [Filinski 1999], which is directly supported by
Agda’s elaborator reflection.

To demonstrate, we have adapted Semantics, semantics,
and Renaming in Section 2 to our framework, enabling pro-
grammers to write Lam and then derive rename for Lam.
Below we sketch (a slightly simplified version of) the deriva-
tion process, which is depicted in Figure 3.
The first step is to derive from Lam a description LamD

of type DataD using a macro genDataD:

LamD = genDataD Lam

Somewhat unsatisfactorily, currently DSL programmers still
need to understand DataD descriptions, because they need
to provide a proof that Lam is a syntax datatype:

LamSyn : Syntax LamD

The predicate Syntax holds for d : DataD essentially when
there exists a Desc that translates to d. (For other kinds of
generic libraries, similar predicates may be defined more
directly on the structure of DataD.)
Now programmers can apply Renaming to both LamD

and LamSyn to instantiate a renaming Semantics for Lam:

LamRen = Renaming LamD LamSyn

Allais et al.’s semantics function is replaced by SemP, which
computes ‘fold programs’ of type FoldP from a Semantics:

LamRenP = SemP LamD LamSyn LamRen

Unlike semantics, fold programs themselves are not execut-
able, but can be reified as native functions by a metaprogram
defineFold in conjunction with unquoteDecl, an Agda prim-
itive that defines a given name (in this case rename):

unquoteDecl rename = defineFold LamRenP rename

This rename function has a definition close to the one in
Figure 2, and can be used just likemanually defined functions.
Notably, the generic entities LamD, LamSyn, LamRen, and
LamRenP are just ‘meta-level’ artefacts for deriving rename,
and do not interfere with the subsequent development.

4 Discussion
To address the interoperability problem (Section 1), our frame-
work allows programmers to work with native datatypes
(such as Lam) while deriving operations with natural defin-
itions (such as rename) from generic libraries; moreover,
by showing that the DataD description of a datatype satis-
fies several predicates, we gain access to the corresponding
libraries all at once. The technique of (re-)defining Allais
et al.’s Desc universe as a predicate/subset of our DataD
universe is generally applicable to universes of other gen-
eric libraries (as long as they are not more expressive than
DataD), and makes it easier to use those libraries with our
reification metaprograms (compared to reimplementing the
metaprograms for each library). Currently our framework is
implemented in Agda, but the essential idea depends only
on elaborator reflection, and should work in more languages
as elaborator reflection becomes more popular.

The reported experiment is small but already reveals some
limitations of our framework and of Allais et al.’s library.
By discussing these limitations, we hope to illuminate some
possible directions for developing (syntax-) generic libraries.

For the framework: It is not so convenient having to care-
fully apply generic programs to the right arguments and
reifying them one at a time — there should be a better user
interface (which may require significant changes to Agda’s
design though). Proofs that DataD descriptions satisfy Syn-
tax are straightforward but tedious, and should be automated,
probably also with elaborator reflection. And it may be be-
neficial to introduce stages explicitly into the framework,
for example to reason about the ‘cleanness’ of generated
code [Pickering et al. 2020, Section 4.1].
For syntax-generic libraries: Currently the largest devel-

opment done with Allais et al.’s library seems to be a strong
normalisation proof for simply typed 𝜆-calculus with disjoint
sums [Abel et al. 2019, Section 4.3], whose features are stand-
ard.While it is conceivable that the universe can be expanded
to encode more datatypes, the DSL features covered will al-
ways be predetermined when defining the universe. If the
intended users include programming language researchers,
who invent new features that are unlikely to be covered by
existing libraries, then libraries targeting a fixed universe of
syntaxes may not be too useful. Here are some possible scen-
arios where syntax-generic libraries might help: Users might
start with a standard syntax definition and then modify it
to accommodate new features; this is currently supported
by our framework, which allows definitions to be printed
(rather than unquoted) and then copied and pasted into the
users’ files. Or, exploiting Agda’s interactive capabilities, we
could generate partial definitions with holes, although there
is still the problem of where the holes should appear, which
is perhaps no less difficult than the problem of composing
syntaxes or type theories [Delaware et al. 2013; Forster and
Stark 2020], on which much work is still needed.
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