
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Computing with Generic Trees in Agda
Stephen Dolan

stedolan@stedolan.net

Abstract
Dependently-typed programming languages offer power-
ful new means of abstraction, allowing the programmer to
work generically across data structures. However, using the
standard generic encoding of tree-like data structures (the
W-types), we soon notice a caveat: the computational be-
haviour of W-types does not quite match their first-order
counterparts. Here, we show how a tweak to the definition
of W-types avoids this caveat, making the generic definition
work just as well as the direct one.

ACM Reference Format:
Stephen Dolan. 2022. Computing with Generic Trees in Agda. In
Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Part of the promise of dependent types is that the ability to
abstract over types just as easily as one can abstract over
values makes generic programming straightforward. One
example is the definition of W-types, which in a single stroke
defines a whole family of tree-like data structures:

data W (Sh : Set) (Pl : Sh → Set) : Set where
sup : (s : Sh) → (Pl s → W Sh Pl)→ W Sh Pl

This type represents tree-shaped data generically. A tree
datatype is given by a set Sh of shapes, describing the possible
kinds of node, and for each shape s a set Pl s of places, listing
the subtrees of such nodes. A tree of such a type is then given
as a node of a specified shape, with one subtree per place of
that shape. (This is the least fixed point of a container [2],
from where the “shapes and places” terminology arises)

This is the simplest form of W-type, generically represent-
ing a single recursive datatype with no parameters and no
indices. While this is enough to illustrate the point of this
paper, note that the idea has been generalised much further,
covering nested types [1], indices [3, 5], and more)

The trouble with this definition, at least in standard inten-
sional type theory, is that what would normally be a record
of several values (“one subtree for each place”) is instead
encoded as a function (“a function from places to subtrees”),
and this causes difficulties with equality.

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1.1 Encoding records as functions
A pair 𝐴 ×𝐴 can be encoded as a function 2 → 𝐴, where 2
is the type containing two elements. (Indeed, both are often
written 𝐴2).

We can try this in Agda, implementing construction and
projection functions for pairs-as-functions:

Pair : Set → Set
Pair A = (Bool→ A)

make : {A : Set}→ A → A→ Pair A
make a b = _ { false→ a; true→ b }

proj1 proj2 : {A : Set} → Pair A → A
proj1 p = p false
proj2 p = p true

The problem arises when we consider equality. The [-
equality rule for pairs states:

𝑝 ≡ (proj1 𝑝, proj2 𝑝)
But in our functional encoding in Agda, we’d need to show

p ≡ _ { false→ p false; true → p true }

This does not hold definitionally. Agda compares the two
functions by comparing them after applying an abstract ar-
gument 𝑥 : Bool, but there is no [rule for Bool which would
allow it to continue by case analysis on 𝑥 .

If function extensionality is available propositionally (e.g.
because it is postulated, or becausewe’re working in a system
like HoTTwhere it is provable), then we can prove[-equality
for functional pairs. However, this is less useful than the
definitional equality of native pairs, since it is not used in
computation and must be explicitly appealed to.
One could imagine adding special-case rules to Agda for

definitional equality at type 2 → 𝐴, by comparing two func-
tions at arguments true and false. This approach does not
generalise, however, because of the following example due
to McBride [7]:
Consider the functional encoding of the empty tuple, or

the unit type. An tuple of no 𝐴 is encoded as a function
0 → 𝐴 (where 0 is the empty type), and by the [rule for
empty records we expect any two such functions to be equal.
In particular, this means that in an arbitrary context Γ:

Γ ⊢ (_𝑥 .true) ≡ (_𝑥 .false) : 0 → 2

If there is some 𝑒 such that Γ ⊢ 𝑒 : 0 (that is, if Γ is an
inconsistent context), then we have:

Γ ⊢ (_𝑥.true)𝑒 ≡ (_𝑥.false)𝑒 : 2
Γ ⊢ true ≡ false : 2

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Stephen Dolan

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

So, deciding whether true ≡ false means first deciding
whether Γ is inconsistent. Since the latter is undecidable, we
have broken decidability of definitional equality.

1.2 Induction on Nat
These difficulties with functional encoding of records crop
up when we try to write the induction principles forW-types.
For Nat, for instance, we expect to end up with:

nat-ind :
(R : Nat → Set)
(Rzero : R zero)
(Rsucc : ∀ n → R n → R (succ n)) →
∀ x → R x

But when we try to write the case for the zero shape, with
an empty set of places, we find that our provided Rzero does
not apply directly, because the two empty collections of
subtrees are not definitionally equal. We can prove them
equal propositionally, but then we lose the computation rule:

nat-ind R Rzero Rsucc zero ≡ Rzero

1.3 Contribution
The contribution of this paper is to write the induction prin-
ciple for W-types generically, and have it compute, inside
intensional type theory.
It is not a new result that this can be done by restricting

to finitary W-types, where each tree has only finitely many
subtrees. (These are fixed points of what Girard calls normal
functors [6], rather than fixed points of general containers).
In this case, one can encode the subtrees as a finite vector
(cf. McBride [8]), with the expected computation rules.

While this approach is not novel, we present an alternative
construction of it in section 3, based on a universe of finite
types defined in section 2.

The new result here is to show that a small generalisation
of the technique can work for infinitary W-types as well. In
section 4, we introduce partitioned sets, which are disjoint
unions of finitely many sets (which need not themselves be
finite). By using partitioned sets rather than finite sets as the
set of places, we can describe even infinitary W-types that
still compute, as demonstrated in section 5.

The above takes place using the proof assistant Agda, and
this paper is a literate Agda script.

2 Codes for Finite Types
Our goal for this section is to encode function types𝐴 → 𝐵 as
records, for finite𝐴, and we begin by writing a type of codes
for finite types, following the universes approach explored
by Benke et al. [4].

The most straightforward choice is to useN, which has ex-
actly one representative for each finite cardinality. However,
we do not want our finite types to be unique up to cardinal-
ity, as a type of exactly two elements is not necessarily Bool.

So instead, we define finite codes as containing the empty
type, singletons, and being closed under sum, and we allow
singletons to be named:

infixr 20 _+_
data Fin : Set where
none : Fin
one : String→ Fin
+ : Fin → Fin → Fin

The finite types themselves are defined by interpreting
Fin into Set:

record NamedUnit (Name : String) {l} : Set l where
constructor tt

⟦_⟧ : Fin→ Set
⟦ none ⟧ = ⊥
⟦ one name ⟧ = NamedUnit name
⟦ A + B ⟧ = ⟦ A ⟧ ⊎ ⟦ B ⟧

We use the NamedUnit type to ensure that distinct codes
have distinct interpretations. This condition is not semanti-
cally important, but aids Agda’s typechecking since it many
cases it is then able to uniquely deduce the code from the
interpretation, allowing us to mostly leave codes as implicit
arguments to be filled in automatically.

Our named singletons mean we can write finite types with
named members:

foobarbaz : Fin
foobarbaz = one "foo" + one "bar" + one "baz"

Sadly, its inhabitants have names like inj2 (inj1 tt) instead
of "bar". To let us make use of the names, we add a conve-
nience function for looking up elements by name:

lookup : (A : Fin) → String→ Maybe ⟦ A ⟧
lookup none s = nothing
lookup (one t) s with primStringEquality t s
... | false = nothing
... | true = just tt
lookup (A + B) s with lookup A s
... | just x = just (inj1 x)
... | nothing with lookup B s
... | just x = just (inj2 x)
... | nothing = nothing

as well as some syntactic trickery for making use of it:

data Found : Set where
> : Found

inhab : ∀ {A : Set}→Maybe A → Set
inhab nothing = ⊥
inhab (just _) = Found

< : ∀ {A : Fin}→ (s : String) → inhab (lookup A s)→ ⟦ A ⟧
< {A} s with lookup A s

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Computing with Generic Trees in Agda Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

... | nothing = _ ()

... | just x = _ _→ x

Now, we can refer to inhabitants of foobarbaz compactly:

bar : ⟦ foobarbaz ⟧
bar = < "bar" >

The trick here is that the second argument to < is of type
inhab (lookup A s), which is uninhabited if lookup fails, but
inhabited by > if it succeeds.

2.1 Universe polymorphism and generalization
We are going to use these finite codes to describe both values
and types, and to allow the same definitions to be used for
both we employ Agda’s universe polymorphism. We are not
making much use of this powerful feature: the only universe
levels we actually use are 0 and 1, and we could get the same
effect by duplicating most definitions.
From here on, the number of quantified variables in our

types increases, so to remove some clutter we allow Agda
to implicitly generalise “l” as a universe level and “A” as a
finite code:

variable l : Level
variable A : Fin

2.2 Function types with finite domain
Next, we define functions with finite domain, by recursion
on the code of their domain:

record One (Name : String) (S : Set l) : Set l where
constructor v
field contents : S

→° : Fin→ Set l → Set l
none →° S = ⊤
one name →° S = One name S
(A + B) →° S = (A →° S) × (B →° S)

As before, using theOne type ensures distinct codes have dis-
tinct interpretations, improving inference. We also write an
alternative constructor for One, and a convenience function
for proving equations on it.

_ ↦→_ : (Name : String)→ {S : Set l} → S → One Name S
_ ↦→ x = v x

≡/v : ∀ {n} {A : Set l} {a a’ : A} →
(a ≡ a’)→ n ↦→ a ≡ n ↦→ a’

≡/v refl = refl

The purpose of ↦→ is to let us use explicit names when
writing functions with finite domain:

is-bar : foobarbaz →° Bool
is-bar =
("foo" ↦→ false),

("bar" ↦→ true),
("baz" ↦→ false)

These names are redundant, since typechecking works by
position rather than by name: in each occurrence of ↦→, there
is only one string that can appear on the left andAgda already
knows what it is. However, being able to write these names
(and have them checked) makes the code readable.

Having defined→°, we now define generic introduction
and elimination forms (lambda-abstraction and application):

_° : {S : Set l}→ (⟦ A ⟧ → S) → (A →° S)
_° {A = none} f = tt
_° {A = one _} f = v (f tt)
_° {A = A + B} f = _° (f ◦ inj1) , _° (f ◦ inj2)

⊳° : {S : Set l}→ (A →° S)→ (⟦ A ⟧ → S)
⊳° {A = one _} (v f) tt = f
⊳° {A = A + B} (f , g) (inj1 x) = f ⊳° x
⊳° {A = A + B} (f , g) (inj2 x) = g ⊳° x

These function types have slightly different computation
rules than the usual, as their underlying implementation is
as records rather than as functions. In particular, the 𝛽 and [
rules for functions no longer hold: we do not have (_𝑥.𝑓)𝑒 ≡
𝑓 [𝑥/𝑒] nor 𝑓 ≡ _𝑥 .𝑓 𝑥 definitionally in general. However,
these rules are provable (that is, they hold propositionally):

beta° : {S : Set l} (f : ⟦ A ⟧ → S) (x : ⟦ A ⟧) →
(_° f ⊳° x) ≡ f x

beta° {A = one _} f tt = refl
beta° {A = A + B} f (inj1 x) = beta° (f ◦ inj1) x
beta° {A = A + B} f (inj2 x) = beta° (f ◦ inj2) x

eta° : {S : Set l} (f : A →° S)→
f ≡ _° _ x → f ⊳° x

eta° {A = none} tt = refl
eta° {A = one _} (v x) = refl
eta° {A = A + B} (f , g) = ≡/, (eta° f) (eta° g)

Additionally, 𝛽-equality holds definitionally as long as the
code of the domain and the argument are both in canonical
form, while [-equality holds definitionally when the code of
the domain is canonical. So these functions do compute, but
not when their types or arguments are stuck. That is, while
(_° f ⊳° x) does not reduce with x a variable, an application
to a concrete argument like _° f ⊳° (<"bar">) reduces to f
(<"bar">) for any f of type ⟦ foobarbaz ⟧ → Set.

A useful property that these functions also have is that
extensionality is provable:

ext° : {S : Set l} (f g : ⟦ A ⟧ → S)→
(eq : ∀ x → f x ≡ g x)→
_° f ≡ _° g

ext° {A = none} f g eq = refl
ext° {A = one _} f g eq = ≡/v (eq tt)
ext° {A = A + B} f g eq =

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Stephen Dolan

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

≡/, (ext° (f ◦ inj1) (g ◦ inj1) (eq ◦ inj1))
(ext° (f ◦ inj2) (g ◦ inj2) (eq ◦ inj2))

Again, this holds definitionally for canonical domain codes.

2.3 Dependent functions with finite domain
Next, we generalise from simple function types→° to depen-
dent ones Π°, where the type of the result may depend on
the argument. These are semantically tuples, consisting of
finitely many values of different types.
We need to define→° and Π° separately, because the for-

mer is used in the definition of the latter: the result type of
Π° is given as a finitary function into Set:

Π° : (A : Fin) (U : A →° Set l)→ Set l
Π° none U = ⊤
Π° (one name) (v U) = One name U
Π° (A + B) (U , V) = (Π° A U) × (Π° B V)

As above, we have abstraction and application:

Λ° : {U : A →° Set l} → ((x : ⟦ A ⟧) → U ⊳° x)→ (Π° A U)
Λ° {A = none} f = tt
Λ° {A = one _} f = v (f tt)
Λ° {A = A + B} f = Λ° (f ◦ inj1) , Λ° (f ◦ inj2)

◁° : {U : A →° Set l}→ (Π° A U) → (a : ⟦ A ⟧)→ U ⊳° a
◁° {A = one _} (v f) x = f
◁° {A = A + B} (f , g) (inj1 x) = f ◁° x
◁° {A = A + B} (f , g) (inj2 x) = g ◁° x

The 𝛽 and [rules hold (with the same caveats about compu-
tation as before), as does extensionality:

Beta° : {U : A →° Set l} → (f : ((x : ⟦ A ⟧) → U ⊳° x))→
(a : ⟦ A ⟧) → Λ° f ◁° a ≡ f a

Eta° : {U : A→° Set l} → (f : Π° A U)→
f ≡ Λ° _ x → f ◁° x

Ext° : {U : A→° Set l} → (f g : (x : ⟦ A ⟧)→ U ⊳° x) →
(eq : ∀ x → f x ≡ g x) → Λ° f ≡ Λ° g

The proofs are omitted, as they are identical to those for
simple function types.

3 Finitary W-types
Having function types with finite domains available, we are
now able to generically describe finite trees, by taking the
definition of W-types above and replacing → with →°:

data W° (Sh : Set) (Pl : Sh → Fin) : Set where
sup : (sh : Sh) → (Pl sh →° W° Sh Pl) →W° Sh Pl

Note that this being accepted as a strictly positive inductive
type relies on the precise definition of →°.
The full eliminator for W-types is a bit of a mouthful. It

states that to compute a result 𝑅 for all trees of a given W-
type, it suffices to compute 𝑅 for every tree of the form sup
sh sub, given 𝑅 is already computed for each subtree in sub.

The type is almost that of the standard eliminator, ex-
cept uses finitary function spaces→° and Π° instead of the
usual ones. The implementation is slightly different, doing
an explicit recursion on the set of places to ensure that the
recursion is structural:

elim° : ∀ {Sh Pl} (R : W° Sh Pl → Set) →
(F : (sh : Sh)→

(sub : Pl sh →° W° Sh Pl)→
(subR : Π° (Pl sh) (_° _ p → R (sub ⊳° p))) →
R (sup sh sub))→

(x : W° Sh Pl)→ R x
elim° {Sh} {Pl} R F (sup sh t) = F sh t (IH t)
where
IH : ∀ {Ps}→ (t : Ps →°W° Sh Pl)→

Π° Ps (_° (_ p → R (t ⊳° p)))
IH {none} t = tt
IH {one n} (v t) = n ↦→ elim° R F t
IH {Ps1 + Ps2} (t1 , t2) = IH t1 , IH t2

As an example, we implement the Peano natural numbers,
which are written in Agda directly as:

data Nat : Set where
zero : Nat
succ : (x : Nat) → Nat

The set of shapes of a W°-type is an arbitrary Set, so we are
not obliged to use Fin. In this case it happens to be finite,
making it convenient to use Fin anyway. We use a helper
function to easily eliminate Fin in ordinary functions:

cases : {B : ⟦ A ⟧ → Set l} → (Π° A (_° B))→
(a : ⟦ A ⟧) → B a

cases f a = transp (beta° _ a) (f ◁° a)

Then, the definition of Nat is:

Nat = W° ⟦ one "zero" + one "succ" ⟧
(cases (
"zero" ↦→ none ,
"succ" ↦→ one "x"))

and the constructors are:

zero : Nat
zero = sup (<"zero">) tt

succ : Nat→ Nat
succ x = sup (<"succ">) ("x" ↦→ x)

The usual induction principle for N is now definable by
appeal to elim°:

nat-ind :
(R : Nat→ Set)
(Pzero : R zero)
(Psucc : ∀ n → R n → R (succ n))→
∀ x → R x

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Computing with Generic Trees in Agda Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

nat-ind R Pzero Psucc =
elim° R (cases (
"zero" ↦→ (_ _ _ → Pzero) ,
"succ" ↦→ _ { (v x) (v Rx)→ Psucc x Rx }))

The point of this exercise is that unlike with plainW-types,
the induction principle so defined has the right computation
behaviour, in particular having the right behaviour on zero:

nat-ind-zero : ∀ { R Pzero Psucc }→
nat-ind R Pzero Psucc zero ≡ Pzero

nat-ind-zero = refl

nat-ind-succ : ∀ { R Pzero Psucc x } →
nat-ind R Pzero Psucc (succ x)
≡ Psucc x (nat-ind R Pzero Psucc x)

nat-ind-succ = refl

The important thing is not that these are true, but that they
are true by refl: our definition of nat-ind computes.

4 Partitioned Sets
Next, we generalise from finite sets to partitioned sets, which
are disjoint unions of finitely many components, where the
components themselves need not be finite:

record PSet : Set1 where
constructor pset
field
parts : Fin
elems : parts→° Set

⟦_⟧* : PSet→ Set
⟦ pset none E ⟧* = ⊥
⟦ pset (one name) (v E) ⟧* = NamedUnit name × E
⟦ pset (P + Q) (E , F) ⟧* = ⟦ pset P E ⟧* ⊎ ⟦ pset Q F ⟧*
An element of a partitioned set can be constructed by

specifying a component and a member of that component:

el : ∀ {P E}→ (p : ⟦ P ⟧)→ (E ⊳° p)→ ⟦ pset P E ⟧*
el {P = one x} p e = tt , e
el {P = P + Q} (inj1 p) e = inj1 (el p e)
el {P = P + Q} (inj2 q) e = inj2 (el q e)

4.1 Functions on Partitioned Sets
Mirroring the definitions of →° and Π° earlier, we define
→* and Π* as functions with partitioned rather than finite
domain. The definitions are essentially curried, where a func-
tion from a partitioned set 𝑃 to a set 𝑆 is a finitary function
from the components of 𝑃 to an ordinary function from the
members of that component to 𝑆 :

→* : ∀ {l}→ PSet → Set l → Set l
pset none tt →* S = ⊤
pset (one name) (v E)→* S =
One name (E → S)

pset (P + Q) (E , F) →* S =
((pset P E) →* S) × ((pset Q F)→* S)

Π* : (X : PSet) (M : X →* Set l) → Set l
Π* (pset none tt) M = ⊤
Π* (pset (one name) (v E)) (v M) =
One name ((x : E) → M x)

Π* (pset (P + Q) (E , F)) (M , N) =
Π* (pset P E) M × Π* (pset Q F) N

As before, these can be introduced and eliminated with
abstraction and application operators:

variable X : PSet

_* : {S : Set l}→ (⟦ X ⟧*→ S) → (X →* S)
_* {X = pset none tt} f = tt
_* {X = pset (one n) (v E)} f = n ↦→ _ x → f (tt , x)
_* {X = pset (P + Q) (E , F)} f = _* (f ◦ inj1) , _* (f ◦ inj2)

⊳* : {S : Set l} → (X →* S)→ ⟦ X ⟧*→ S
⊳* {X = pset (one _) (v E)} (v f) (tt , e) = f e
⊳* {X = pset (P + Q) (E , F)} (f , g) (inj1 x) = f ⊳* x
⊳* {X = pset (P + Q) (E , F)} (f , g) (inj2 x) = g ⊳* x

Λ* : {M : X →* Set l}→ ((x : ⟦ X ⟧*)→ M ⊳* x)→
Π* X M

Λ* {X = pset none tt} f = tt
Λ* {X = pset (one n) E} f = n ↦→ _ x → f (tt , x)
Λ* {X = pset (P + Q) (E , F)} f = Λ* (f ◦ inj1) , Λ* (f ◦ inj2)

◁* : {M : X →* Set l}→ (Π* X M) →
(x : ⟦ X ⟧*)→ M ⊳* x

◁* {X = pset (one n) (v E)} (v f) (tt , e) = f e
◁* {X = pset (P + Q) (E , F)} (f , g) (inj1 x) = f ◁* x
◁* {X = pset (P + Q) (E , F)} (f , g) (inj2 x) = g ◁* x

Agda’s termination checker is relatively generous here, by
accepting pset P E as smaller than pset (P + Q) (E , F) –
with other typecheckers, we may have had to use a separate
recursion on P to make the recursion count as structural.
We again have 𝛽 and [, with essentially identical proofs

to the finite case:

beta* : {S : Set l} (f : ⟦ X ⟧*→ S)→
(x : ⟦ X ⟧*)→ (_* f ⊳* x) ≡ f x

eta* : {S : Set l} (f : X →* S)→
f ≡ _* _ x → f ⊳* x

Beta* : {U : X →* Set l}→ (f : ((x : ⟦ X ⟧*) → U ⊳* x))→
(a : ⟦ X ⟧*)→ Λ* f ◁* a ≡ f a

Eta* : {U : X →* Set l}→ (f : Π* X U)→
f ≡ Λ* _ x → f ◁* x

However, lacking function extensionality, we no longer
have the ext and Ext rules, as showing equality of func-
tions on partitioned sets requires both equality of their finite,
record-based part and their possibly-infinite, functional part.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Stephen Dolan

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

5 Infinitary W-types with Partitioned Sets
Finally, we are ready to implement W-types with a parti-
tioned set of places:

data W* (Sh : Set) (Pl : Sh → PSet) : Set where
sup : (sh : Sh) → (Pl sh →* W* Sh Pl)→ W* Sh Pl

The eliminator is identical to that of W°, with * replacing °:

elim* : ∀ {Sh Pl} (R : W* Sh Pl → Set) →
(F : (sh : Sh)→

(sub : (Pl sh) →* W* Sh Pl)→
(subR : Π* (Pl sh) (_* _ p → R (sub ⊳* p)))→
R (sup sh sub)) →

(x : W* Sh Pl) → R x
elim* {Sh} {Pl} R F (sup sh t) = F sh t (IH t)
where
IH : ∀ {Ps}→ (t : Ps →* W* Sh Pl)→

Π* Ps (_* (_ p → R (t ⊳* p)))
IH {pset none Es} t = tt
IH {pset (one n) Es} (v t) = n ↦→ _ e → elim* R F (t e)
IH {pset (Ps1 + Ps2) Es} (t1 , t2) = IH t1 , IH t2

As an example, we code the Brouwer ordinal trees, which
are defined by two finitary shapes and one infinitary one:

data Ord : Set where
ozero : Ord
osucc : Ord → Ord
olim : (Nat → Ord) → Ord

UsingW*, this translates to:

Ord = W* ⟦ one "zero" + one "succ" + one "lim" ⟧
(cases (
"zero" ↦→ pset none tt ,
"succ" ↦→ pset (one "x") ("x" ↦→ ⊤) ,
"lim" ↦→ pset (one "f") ("f" ↦→ Nat)))

with constructors:

ozero : Ord
ozero = sup (<"zero">) tt

osucc : Ord → Ord
osucc x = sup (<"succ">) ("x" ↦→ _ _ → x)

olim : (Nat → Ord) → Ord
olim f = sup (<"lim">) ("f" ↦→ f)

and an induction principle (defined using the general elim*):

ord-ind :
(R : Ord → Set)
(Pzero : R ozero)
(Psucc : ∀ n → R n → R (osucc n))
(Plim : ∀ f → (∀ n → R (f n)) → R (olim f))→
∀ x → R x

ord-ind R Pzero Psucc Plim =

elim* R (cases (
"zero" ↦→ (_ _ _ → Pzero) ,
"succ" ↦→ (_ { (v x) (v Rx) → Psucc (x tt) (Rx tt) }) ,
"lim" ↦→ (_ { (v f) (v Rf)→ Plim f Rf })))

Like nat-ind previously, this eliminator computes, as shown
by the following properties (where again, the point is not so
much that they are true but that they are true by refl):
ord-ind-zero : ∀ { R Pzero Psucc Plim }→
ord-ind R Pzero Psucc Plim ozero ≡ Pzero

ord-ind-zero = refl

ord-ind-succ : ∀ { R Pzero Psucc Plim x }→
ord-ind R Pzero Psucc Plim (osucc x)
≡ Psucc x (ord-ind R Pzero Psucc Plim x)

ord-ind-succ = refl

ord-ind-lim : ∀ { R Pzero Psucc Plim f }→
ord-ind R Pzero Psucc Plim (olim f)
≡ Plim f (_ n → ord-ind R Pzero Psucc Plim (f n))

ord-ind-lim = refl

6 Conclusion
The powerful abstraction capabilities of dependently-typed
programming languages make it possible to write extremely
general definitions of families of data structures. Yet even
when it is fairly straightforward to define a type with the
desired inhabitants, it can be much trickier to ensure that
the type has the right computation rules.

However, computation rules are fundamentally finite things,
and as we’ve seen here careful attention to which parts of a
definition are finitary can yield definitions that compute as
expected.

References
[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2004. Represent-

ing nested inductive types using W-types. In International Colloquium
on Automata, Languages, and Programming. Springer, 59–71.

[2] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers:
Constructing strictly positive types. Theoretical Computer Science 342,
1 (2005), 3–27.

[3] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and
Peter Morris. 2015. Indexed containers. Journal of Functional Program-
ming 25 (2015).

[4] Marcin Benke, Peter Dybjer, and Patrik Jansson. 2003. Universes for
generic programs and proofs in dependent type theory. Nord. J. Comput.
10, 4 (2003), 265–289.

[5] James Chapman, Pierre-Evariste Dagand, Conor Mcbride, and Peter
Morris. 2010. The gentle art of levitation. In ICFP 2010. 3–14.

[6] Jean-Yves Girard. 1988. Normal functors, power series and _-calculus.
Annals of pure and applied logic 37, 2 (1988), 129–177.

[7] Conor McBride. 2009. Grins from my Ripley Cupboard. http://
strictlypositive.org/Ripley.pdf.

[8] Conor McBride. 2015. Datatypes of datatypes. Summer School on
Generic and Effectful Programming, St Anne’s College, Oxford (2015).

6

http://strictlypositive.org/Ripley.pdf
http://strictlypositive.org/Ripley.pdf

	Abstract
	1 Introduction
	1.1 Encoding records as functions
	1.2 Induction on Nat
	1.3 Contribution

	2 Codes for Finite Types
	2.1 Universe polymorphism and generalization
	2.2 Function types with finite domain
	2.3 Dependent functions with finite domain

	3 Finitary W-types
	4 Partitioned Sets
	4.1 Functions on Partitioned Sets

	5 Infinitary W-types with Partitioned Sets
	6 Conclusion
	References

