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Abstract
Dependently-typed programming languages offer power-
ful new means of abstraction, allowing the programmer to
work generically across data structures. However, using the
standard generic encoding of tree-like data structures (the
W-types), we soon notice a caveat: the computational be-
haviour of W-types does not quite match their first-order
counterparts. Here, we show how a tweak to the definition
of W-types avoids this caveat, making the generic definition
work just as well as the direct one.

ACM Reference Format:
Stephen Dolan. 2022. Computing with Generic Trees in Agda. In
Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Part of the promise of dependent types is that the ability to
abstract over types just as easily as one can abstract over
values makes generic programming straightforward. One
example is the definition of W-types, which in a single stroke
defines a whole family of tree-like data structures:

data W (Sh : Set) (Pl : Sh → Set) : Set where
sup : (s : Sh) → (Pl s → W Sh Pl)→ W Sh Pl

This type represents tree-shaped data generically. A tree
datatype is given by a set Sh of shapes, describing the possible
kinds of node, and for each shape s a set Pl s of places, listing
the subtrees of such nodes. A tree of such a type is then given
as a node of a specified shape, with one subtree per place of
that shape. (This is the least fixed point of a container [2],
from where the “shapes and places” terminology arises)

This is the simplest form of W-type, generically represent-
ing a single recursive datatype with no parameters and no
indices. While this is enough to illustrate the point of this
paper, note that the idea has been generalised much further,
covering nested types [1], indices [3, 5], and more)

The trouble with this definition, at least in standard inten-
sional type theory, is that what would normally be a record
of several values (“one subtree for each place”) is instead
encoded as a function (“a function from places to subtrees”),
and this causes difficulties with equality.

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
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1.1 Encoding records as functions
A pair 𝐴 ×𝐴 can be encoded as a function 2 → 𝐴, where 2
is the type containing two elements. (Indeed, both are often
written 𝐴2).

We can try this in Agda, implementing construction and
projection functions for pairs-as-functions:

Pair : Set → Set
Pair A = (Bool→ A)

make : {A : Set}→ A → A→ Pair A
make a b = 𝜆 { false→ a; true→ b }

proj1 proj2 : {A : Set} → Pair A → A
proj1 p = p false
proj2 p = p true

The problem arises when we consider equality. The 𝜂-
equality rule for pairs states:

𝑝 ≡ (proj1 𝑝, proj2 𝑝)
But in our functional encoding in Agda, we’d need to show

p ≡ 𝜆 { false→ p false; true → p true }

This does not hold definitionally. Agda compares the two
functions by comparing them after applying an abstract ar-
gument 𝑥 : Bool, but there is no 𝜂 rule for Bool which would
allow it to continue by case analysis on 𝑥 .

If function extensionality is available propositionally (e.g.
because it is postulated, or becausewe’re working in a system
like HoTTwhere it is provable), then we can prove𝜂-equality
for functional pairs. However, this is less useful than the
definitional equality of native pairs, since it is not used in
computation and must be explicitly appealed to.
One could imagine adding special-case rules to Agda for

definitional equality at type 2 → 𝐴, by comparing two func-
tions at arguments true and false. This approach does not
generalise, however, because of the following example due
to McBride [7]:
Consider the functional encoding of the empty tuple, or

the unit type. An tuple of no 𝐴 is encoded as a function
0 → 𝐴 (where 0 is the empty type), and by the 𝜂 rule for
empty records we expect any two such functions to be equal.
In particular, this means that in an arbitrary context Γ:

Γ ⊢ (𝜆𝑥 .true) ≡ (𝜆𝑥 .false) : 0 → 2

If there is some 𝑒 such that Γ ⊢ 𝑒 : 0 (that is, if Γ is an
inconsistent context), then we have:

Γ ⊢ (𝜆𝑥.true)𝑒 ≡ (𝜆𝑥.false)𝑒 : 2
Γ ⊢ true ≡ false : 2

1
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So, deciding whether true ≡ false means first deciding
whether Γ is inconsistent. Since the latter is undecidable, we
have broken decidability of definitional equality.

1.2 Induction on Nat
These difficulties with functional encoding of records crop
up when we try to write the induction principles forW-types.
For Nat, for instance, we expect to end up with:

nat-ind :
(R : Nat → Set)
(Rzero : R zero)
(Rsucc : ∀ n → R n → R (succ n)) →
∀ x → R x

But when we try to write the case for the zero shape, with
an empty set of places, we find that our provided Rzero does
not apply directly, because the two empty collections of
subtrees are not definitionally equal. We can prove them
equal propositionally, but then we lose the computation rule:

nat-ind R Rzero Rsucc zero ≡ Rzero

1.3 Contribution
The contribution of this paper is to write the induction prin-
ciple for W-types generically, and have it compute, inside
intensional type theory.
It is not a new result that this can be done by restricting

to finitary W-types, where each tree has only finitely many
subtrees. (These are fixed points of what Girard calls normal
functors [6], rather than fixed points of general containers).
In this case, one can encode the subtrees as a finite vector
(cf. McBride [8]), with the expected computation rules.

While this approach is not novel, we present an alternative
construction of it in section 3, based on a universe of finite
types defined in section 2.

The new result here is to show that a small generalisation
of the technique can work for infinitary W-types as well. In
section 4, we introduce partitioned sets, which are disjoint
unions of finitely many sets (which need not themselves be
finite). By using partitioned sets rather than finite sets as the
set of places, we can describe even infinitary W-types that
still compute, as demonstrated in section 5.

The above takes place using the proof assistant Agda, and
this paper is a literate Agda script.

2 Codes for Finite Types
Our goal for this section is to encode function types𝐴 → 𝐵 as
records, for finite𝐴, and we begin by writing a type of codes
for finite types, following the universes approach explored
by Benke et al. [4].

The most straightforward choice is to useN, which has ex-
actly one representative for each finite cardinality. However,
we do not want our finite types to be unique up to cardinal-
ity, as a type of exactly two elements is not necessarily Bool.

So instead, we define finite codes as containing the empty
type, singletons, and being closed under sum, and we allow
singletons to be named:

infixr 20 _+_
data Fin : Set where
none : Fin
one : String→ Fin
_+_ : Fin → Fin → Fin

The finite types themselves are defined by interpreting
Fin into Set:

record NamedUnit (Name : String) {l} : Set l where
constructor tt

⟦_⟧ : Fin→ Set
⟦ none ⟧ = ⊥
⟦ one name ⟧ = NamedUnit name
⟦ A + B ⟧ = ⟦ A ⟧ ⊎ ⟦ B ⟧

We use the NamedUnit type to ensure that distinct codes
have distinct interpretations. This condition is not semanti-
cally important, but aids Agda’s typechecking since it many
cases it is then able to uniquely deduce the code from the
interpretation, allowing us to mostly leave codes as implicit
arguments to be filled in automatically.

Our named singletons mean we can write finite types with
named members:

foobarbaz : Fin
foobarbaz = one "foo" + one "bar" + one "baz"

Sadly, its inhabitants have names like inj2 (inj1 tt) instead
of "bar". To let us make use of the names, we add a conve-
nience function for looking up elements by name:

lookup : (A : Fin) → String→ Maybe ⟦ A ⟧
lookup none s = nothing
lookup (one t) s with primStringEquality t s
... | false = nothing
... | true = just tt
lookup (A + B) s with lookup A s
... | just x = just (inj1 x)
... | nothing with lookup B s
... | just x = just (inj2 x)
... | nothing = nothing

as well as some syntactic trickery for making use of it:

data Found : Set where
> : Found

inhab : ∀ {A : Set}→Maybe A → Set
inhab nothing = ⊥
inhab (just _) = Found

< : ∀ {A : Fin}→ (s : String) → inhab (lookup A s)→ ⟦ A ⟧
< {A} s with lookup A s

2
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... | nothing = 𝜆 ()

... | just x = 𝜆 _→ x

Now, we can refer to inhabitants of foobarbaz compactly:

bar : ⟦ foobarbaz ⟧
bar = < "bar" >

The trick here is that the second argument to < is of type
inhab (lookup A s), which is uninhabited if lookup fails, but
inhabited by > if it succeeds.

2.1 Universe polymorphism and generalization
We are going to use these finite codes to describe both values
and types, and to allow the same definitions to be used for
both we employ Agda’s universe polymorphism. We are not
making much use of this powerful feature: the only universe
levels we actually use are 0 and 1, and we could get the same
effect by duplicating most definitions.
From here on, the number of quantified variables in our

types increases, so to remove some clutter we allow Agda
to implicitly generalise “l” as a universe level and “A” as a
finite code:

variable l : Level
variable A : Fin

2.2 Function types with finite domain
Next, we define functions with finite domain, by recursion
on the code of their domain:

record One (Name : String) (S : Set l) : Set l where
constructor v
field contents : S

_→°_ : Fin→ Set l → Set l
none →° S = ⊤
one name →° S = One name S
(A + B) →° S = (A →° S) × (B →° S)

As before, using theOne type ensures distinct codes have dis-
tinct interpretations, improving inference. We also write an
alternative constructor for One, and a convenience function
for proving equations on it.

_ ↦→_ : (Name : String)→ {S : Set l} → S → One Name S
_ ↦→ x = v x

≡/v : ∀ {n} {A : Set l} {a a’ : A} →
(a ≡ a’)→ n ↦→ a ≡ n ↦→ a’

≡/v refl = refl

The purpose of ↦→ is to let us use explicit names when
writing functions with finite domain:

is-bar : foobarbaz →° Bool
is-bar =
("foo" ↦→ false),

("bar" ↦→ true),
("baz" ↦→ false)

These names are redundant, since typechecking works by
position rather than by name: in each occurrence of ↦→, there
is only one string that can appear on the left andAgda already
knows what it is. However, being able to write these names
(and have them checked) makes the code readable.

Having defined→°, we now define generic introduction
and elimination forms (lambda-abstraction and application):

𝜆° : {S : Set l}→ (⟦ A ⟧ → S) → (A →° S)
𝜆° {A = none} f = tt
𝜆° {A = one _} f = v (f tt)
𝜆° {A = A + B} f = 𝜆° (f ◦ inj1) , 𝜆° (f ◦ inj2)

_⊳°_ : {S : Set l}→ (A →° S)→ (⟦ A ⟧ → S)
_⊳°_ {A = one _} (v f ) tt = f
_⊳°_ {A = A + B} (f , g) (inj1 x) = f ⊳° x
_⊳°_ {A = A + B} (f , g) (inj2 x) = g ⊳° x

These function types have slightly different computation
rules than the usual, as their underlying implementation is
as records rather than as functions. In particular, the 𝛽 and 𝜂
rules for functions no longer hold: we do not have (𝜆𝑥.𝑓 )𝑒 ≡
𝑓 [𝑥/𝑒] nor 𝑓 ≡ 𝜆𝑥 .𝑓 𝑥 definitionally in general. However,
these rules are provable (that is, they hold propositionally):

beta° : {S : Set l} (f : ⟦ A ⟧ → S) (x : ⟦ A ⟧) →
(𝜆° f ⊳° x) ≡ f x

beta° {A = one _} f tt = refl
beta° {A = A + B} f (inj1 x) = beta° (f ◦ inj1) x
beta° {A = A + B} f (inj2 x) = beta° (f ◦ inj2) x

eta° : {S : Set l} (f : A →° S)→
f ≡ 𝜆° 𝜆 x → f ⊳° x

eta° {A = none} tt = refl
eta° {A = one _} (v x) = refl
eta° {A = A + B} (f , g) = ≡/, (eta° f ) (eta° g)

Additionally, 𝛽-equality holds definitionally as long as the
code of the domain and the argument are both in canonical
form, while 𝜂-equality holds definitionally when the code of
the domain is canonical. So these functions do compute, but
not when their types or arguments are stuck. That is, while
(𝜆° f ⊳° x) does not reduce with x a variable, an application
to a concrete argument like 𝜆° f ⊳° (<"bar">) reduces to f
(<"bar">) for any f of type ⟦ foobarbaz ⟧ → Set.

A useful property that these functions also have is that
extensionality is provable:

ext° : {S : Set l} (f g : ⟦ A ⟧ → S)→
(eq : ∀ x → f x ≡ g x)→
𝜆° f ≡ 𝜆° g

ext° {A = none} f g eq = refl
ext° {A = one _} f g eq = ≡/v (eq tt)
ext° {A = A + B} f g eq =

3
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≡/, (ext° (f ◦ inj1) (g ◦ inj1) (eq ◦ inj1))
(ext° (f ◦ inj2) (g ◦ inj2) (eq ◦ inj2))

Again, this holds definitionally for canonical domain codes.

2.3 Dependent functions with finite domain
Next, we generalise from simple function types→° to depen-
dent ones Π°, where the type of the result may depend on
the argument. These are semantically tuples, consisting of
finitely many values of different types.
We need to define→° and Π° separately, because the for-

mer is used in the definition of the latter: the result type of
Π° is given as a finitary function into Set:

Π° : (A : Fin) (U : A →° Set l)→ Set l
Π° none U = ⊤
Π° (one name) (v U ) = One name U
Π° (A + B) (U , V ) = (Π° A U ) × (Π° B V )

As above, we have abstraction and application:

Λ° : {U : A →° Set l} → ((x : ⟦ A ⟧) → U ⊳° x)→ (Π° A U )
Λ° {A = none} f = tt
Λ° {A = one _} f = v (f tt)
Λ° {A = A + B} f = Λ° (f ◦ inj1) , Λ° (f ◦ inj2)

_◁°_ : {U : A →° Set l}→ (Π° A U ) → (a : ⟦ A ⟧)→ U ⊳° a
_◁°_ {A = one _} (v f ) x = f
_◁°_ {A = A + B} (f , g) (inj1 x) = f ◁° x
_◁°_ {A = A + B} (f , g) (inj2 x) = g ◁° x

The 𝛽 and 𝜂 rules hold (with the same caveats about compu-
tation as before), as does extensionality:

Beta° : {U : A →° Set l} → (f : ((x : ⟦ A ⟧) → U ⊳° x))→
(a : ⟦ A ⟧) → Λ° f ◁° a ≡ f a

Eta° : {U : A→° Set l} → (f : Π° A U )→
f ≡ Λ° 𝜆 x → f ◁° x

Ext° : {U : A→° Set l} → (f g : (x : ⟦ A ⟧)→ U ⊳° x) →
(eq : ∀ x → f x ≡ g x) → Λ° f ≡ Λ° g

The proofs are omitted, as they are identical to those for
simple function types.

3 Finitary W-types
Having function types with finite domains available, we are
now able to generically describe finite trees, by taking the
definition of W-types above and replacing → with →°:

data W° (Sh : Set) (Pl : Sh → Fin) : Set where
sup : (sh : Sh) → (Pl sh →° W° Sh Pl) →W° Sh Pl

Note that this being accepted as a strictly positive inductive
type relies on the precise definition of →°.
The full eliminator for W-types is a bit of a mouthful. It

states that to compute a result 𝑅 for all trees of a given W-
type, it suffices to compute 𝑅 for every tree of the form sup
sh sub, given 𝑅 is already computed for each subtree in sub.

The type is almost that of the standard eliminator, ex-
cept uses finitary function spaces→° and Π° instead of the
usual ones. The implementation is slightly different, doing
an explicit recursion on the set of places to ensure that the
recursion is structural:

elim° : ∀ {Sh Pl} (R : W° Sh Pl → Set) →
(F : (sh : Sh)→

(sub : Pl sh →° W° Sh Pl)→
(subR : Π° (Pl sh) (𝜆° 𝜆 p → R (sub ⊳° p))) →
R (sup sh sub))→

(x : W° Sh Pl)→ R x
elim° {Sh} {Pl} R F (sup sh t) = F sh t (IH t)
where
IH : ∀ {Ps}→ (t : Ps →° W° Sh Pl)→

Π° Ps (𝜆° (𝜆 p → R (t ⊳° p)))
IH {none} t = tt
IH {one n} (v t) = n ↦→ elim° R F t
IH {Ps1 + Ps2} (t1 , t2) = IH t1 , IH t2

As an example, we implement the Peano natural numbers,
which are written in Agda directly as:

data Nat : Set where
zero : Nat
succ : (x : Nat) → Nat

The set of shapes of a W°-type is an arbitrary Set, so we are
not obliged to use Fin. In this case it happens to be finite,
making it convenient to use Fin anyway. We use a helper
function to easily eliminate Fin in ordinary functions:

cases : {B : ⟦ A ⟧ → Set l} → (Π° A (𝜆° B))→
(a : ⟦ A ⟧) → B a

cases f a = transp (beta° _ a) (f ◁° a)

Then, the definition of Nat is:

Nat = W° ⟦ one "zero" + one "succ" ⟧
(cases (
"zero" ↦→ none ,
"succ" ↦→ one "x"))

and the constructors are:

zero : Nat
zero = sup (<"zero">) tt

succ : Nat→ Nat
succ x = sup (<"succ">) ("x" ↦→ x)

The usual induction principle for N is now definable by
appeal to elim°:

nat-ind :
(R : Nat→ Set)
(Pzero : R zero)
(Psucc : ∀ n → R n → R (succ n))→
∀ x → R x

4
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nat-ind R Pzero Psucc =
elim° R (cases (
"zero" ↦→ (𝜆 _ _ → Pzero) ,
"succ" ↦→ 𝜆 { (v x) (v Rx)→ Psucc x Rx }))

The point of this exercise is that unlike with plainW-types,
the induction principle so defined has the right computation
behaviour, in particular having the right behaviour on zero:

nat-ind-zero : ∀ { R Pzero Psucc }→
nat-ind R Pzero Psucc zero ≡ Pzero

nat-ind-zero = refl

nat-ind-succ : ∀ { R Pzero Psucc x } →
nat-ind R Pzero Psucc (succ x)
≡ Psucc x (nat-ind R Pzero Psucc x)

nat-ind-succ = refl

The important thing is not that these are true, but that they
are true by refl: our definition of nat-ind computes.

4 Partitioned Sets
Next, we generalise from finite sets to partitioned sets, which
are disjoint unions of finitely many components, where the
components themselves need not be finite:

record PSet : Set1 where
constructor pset
field
parts : Fin
elems : parts→° Set

⟦_⟧* : PSet→ Set
⟦ pset none E ⟧* = ⊥
⟦ pset (one name) (v E) ⟧* = NamedUnit name × E
⟦ pset (P + Q) (E , F ) ⟧* = ⟦ pset P E ⟧* ⊎ ⟦ pset Q F ⟧*
An element of a partitioned set can be constructed by

specifying a component and a member of that component:

el : ∀ {P E}→ (p : ⟦ P ⟧)→ (E ⊳° p)→ ⟦ pset P E ⟧*
el {P = one x} p e = tt , e
el {P = P + Q} (inj1 p) e = inj1 (el p e)
el {P = P + Q} (inj2 q) e = inj2 (el q e)

4.1 Functions on Partitioned Sets
Mirroring the definitions of →° and Π° earlier, we define
→* and Π* as functions with partitioned rather than finite
domain. The definitions are essentially curried, where a func-
tion from a partitioned set 𝑃 to a set 𝑆 is a finitary function
from the components of 𝑃 to an ordinary function from the
members of that component to 𝑆 :

_→*_ : ∀ {l}→ PSet → Set l → Set l
pset none tt →* S = ⊤
pset (one name) (v E)→* S =
One name (E → S)

pset (P + Q) (E , F ) →* S =
((pset P E) →* S) × ((pset Q F )→* S)

Π* : (X : PSet) (M : X →* Set l) → Set l
Π* (pset none tt) M = ⊤
Π* (pset (one name) (v E)) (v M) =
One name ((x : E) → M x)

Π* (pset (P + Q) (E , F )) (M , N ) =
Π* (pset P E) M × Π* (pset Q F ) N

As before, these can be introduced and eliminated with
abstraction and application operators:

variable X : PSet

𝜆* : {S : Set l}→ (⟦ X ⟧*→ S) → (X →* S)
𝜆* {X = pset none tt} f = tt
𝜆* {X = pset (one n) (v E)} f = n ↦→ 𝜆 x → f (tt , x)
𝜆* {X = pset (P + Q) (E , F )} f = 𝜆* (f ◦ inj1) , 𝜆* (f ◦ inj2)

_⊳*_ : {S : Set l} → (X →* S)→ ⟦ X ⟧*→ S
_⊳*_ {X = pset (one _) (v E)} (v f ) (tt , e) = f e
_⊳*_ {X = pset (P + Q) (E , F )} (f , g) (inj1 x) = f ⊳* x
_⊳*_ {X = pset (P + Q) (E , F )} (f , g) (inj2 x) = g ⊳* x

Λ* : {M : X →* Set l}→ ((x : ⟦ X ⟧*)→ M ⊳* x)→
Π* X M

Λ* {X = pset none tt} f = tt
Λ* {X = pset (one n) E} f = n ↦→ 𝜆 x → f (tt , x)
Λ* {X = pset (P + Q) (E , F )} f = Λ* (f ◦ inj1) , Λ* (f ◦ inj2)

_◁*_ : {M : X →* Set l}→ (Π* X M) →
(x : ⟦ X ⟧*)→ M ⊳* x

_◁*_ {X = pset (one n) (v E)} (v f ) (tt , e) = f e
_◁*_ {X = pset (P + Q) (E , F )} (f , g) (inj1 x) = f ◁* x
_◁*_ {X = pset (P + Q) (E , F )} (f , g) (inj2 x) = g ◁* x

Agda’s termination checker is relatively generous here, by
accepting pset P E as smaller than pset (P + Q) (E , F) –
with other typecheckers, we may have had to use a separate
recursion on P to make the recursion count as structural.
We again have 𝛽 and 𝜂, with essentially identical proofs

to the finite case:

beta* : {S : Set l} (f : ⟦ X ⟧*→ S)→
(x : ⟦ X ⟧*)→ (𝜆* f ⊳* x) ≡ f x

eta* : {S : Set l} (f : X →* S)→
f ≡ 𝜆* 𝜆 x → f ⊳* x

Beta* : {U : X →* Set l}→ (f : ((x : ⟦ X ⟧*) → U ⊳* x))→
(a : ⟦ X ⟧*)→ Λ* f ◁* a ≡ f a

Eta* : {U : X →* Set l}→ (f : Π* X U )→
f ≡ Λ* 𝜆 x → f ◁* x

However, lacking function extensionality, we no longer
have the ext and Ext rules, as showing equality of func-
tions on partitioned sets requires both equality of their finite,
record-based part and their possibly-infinite, functional part.
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5 Infinitary W-types with Partitioned Sets
Finally, we are ready to implement W-types with a parti-
tioned set of places:

data W* (Sh : Set) (Pl : Sh → PSet) : Set where
sup : (sh : Sh) → (Pl sh →* W* Sh Pl)→ W* Sh Pl

The eliminator is identical to that of W°, with * replacing °:

elim* : ∀ {Sh Pl} (R : W* Sh Pl → Set) →
(F : (sh : Sh)→

(sub : (Pl sh) →* W* Sh Pl)→
(subR : Π* (Pl sh) (𝜆* 𝜆 p → R (sub ⊳* p)))→
R (sup sh sub)) →

(x : W* Sh Pl) → R x
elim* {Sh} {Pl} R F (sup sh t) = F sh t (IH t)
where
IH : ∀ {Ps}→ (t : Ps →* W* Sh Pl)→

Π* Ps (𝜆* (𝜆 p → R (t ⊳* p)))
IH {pset none Es} t = tt
IH {pset (one n) Es} (v t) = n ↦→ 𝜆 e → elim* R F (t e)
IH {pset (Ps1 + Ps2) Es} (t1 , t2) = IH t1 , IH t2

As an example, we code the Brouwer ordinal trees, which
are defined by two finitary shapes and one infinitary one:

data Ord : Set where
ozero : Ord
osucc : Ord → Ord
olim : (Nat → Ord) → Ord

UsingW*, this translates to:

Ord = W* ⟦ one "zero" + one "succ" + one "lim" ⟧
(cases (
"zero" ↦→ pset none tt ,
"succ" ↦→ pset (one "x") ("x" ↦→ ⊤) ,
"lim" ↦→ pset (one "f") ("f" ↦→ Nat)))

with constructors:

ozero : Ord
ozero = sup (<"zero">) tt

osucc : Ord → Ord
osucc x = sup (<"succ">) ("x" ↦→ 𝜆 _ → x)

olim : (Nat → Ord) → Ord
olim f = sup (<"lim">) ("f" ↦→ f )

and an induction principle (defined using the general elim*):

ord-ind :
(R : Ord → Set)
(Pzero : R ozero)
(Psucc : ∀ n → R n → R (osucc n))
(Plim : ∀ f → (∀ n → R (f n)) → R (olim f ))→
∀ x → R x

ord-ind R Pzero Psucc Plim =

elim* R (cases (
"zero" ↦→ (𝜆 _ _ → Pzero) ,
"succ" ↦→ (𝜆 { (v x) (v Rx) → Psucc (x tt) (Rx tt) }) ,
"lim" ↦→ (𝜆 { (v f ) (v Rf )→ Plim f Rf })))

Like nat-ind previously, this eliminator computes, as shown
by the following properties (where again, the point is not so
much that they are true but that they are true by refl):
ord-ind-zero : ∀ { R Pzero Psucc Plim }→
ord-ind R Pzero Psucc Plim ozero ≡ Pzero

ord-ind-zero = refl

ord-ind-succ : ∀ { R Pzero Psucc Plim x }→
ord-ind R Pzero Psucc Plim (osucc x)
≡ Psucc x (ord-ind R Pzero Psucc Plim x)

ord-ind-succ = refl

ord-ind-lim : ∀ { R Pzero Psucc Plim f }→
ord-ind R Pzero Psucc Plim (olim f )
≡ Plim f (𝜆 n → ord-ind R Pzero Psucc Plim (f n))

ord-ind-lim = refl

6 Conclusion
The powerful abstraction capabilities of dependently-typed
programming languages make it possible to write extremely
general definitions of families of data structures. Yet even
when it is fairly straightforward to define a type with the
desired inhabitants, it can be much trickier to ensure that
the type has the right computation rules.

However, computation rules are fundamentally finite things,
and as we’ve seen here careful attention to which parts of a
definition are finitary can yield definitions that compute as
expected.
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