
Provingly Correct Optimisations on Intrinsically
Typed Expressions

Extended Abstract

Matthias Heinzel
Utrecht University
Utrecht, Netherlands

m.h.heinzel@students.uu.nl

1 Introduction
When writing a compiler for a functional programming lan-
guage, an important consideration is the treatment of binders
and variables. A well-known technique when using depen-
dently typed programming languages such as Agda [Norell
2007] is to define an intrinsically typed syntax tree [Augusts-
son and Carlsson 1999]. Expressions are scope- and type-safe
by construction and admit a total evaluation function. This
construction has featured in several papers, exploring basic
operations like renaming and substitution [Allais et al. 2018]
as well as compilation to different target languages [Pickard
and Hutton 2021, supplemental material].
Optimisations play an important role in compilers, but

establishing their correctness is often not trivial, with ample
opportunity for mistakes. However, there has been little
focus on performing optimisations on intrinsically typed
programs. In this setting, program analysis not only needs
to identify optimisation opportunities, but provide a proof
witness that the optimisation is safe, e.g. that some dead code
is indeed not used. For transformations on intrinsically typed
programs, the programmer can rely on the compiler to check
the relevant invariants, but it can be cumbersome to make it
sufficiently clear that type- and scope-safety are preserved,
especially when manipulating binders and variables.

Since our work is still in progress, we will mainly present
a specific optimisation, dead binding elimination. It is imple-
mented by first annotating expressions with variable usage
information and then removing bindings that turn out to be
unused. We further prove that the optimisation is semantics-
preserving.

2 Dead Binding Elimination
2.1 Intrinsically Typed Expressions with Binders
Wedefine a simple typed expression languagewith let-bindings,
variables, primitive values (integers and Booleans), and a few
binary operators. Since the optimisations we are interested
in relate to variables and binders only, the choice of possible
values and additional primitive operations on them is mostly
arbitrary.

𝑃,𝑄 ::= 𝑣
�� 𝑃 +𝑄

�� . . . �� let 𝑥 = 𝑃 in 𝑄
�� 𝑥

In Agda, the type of expressions Expr is indexed by its
return type (𝜏 : U) and context (Γ : Ctx).

Each free variable is a de Bruijn index into the context and
acts as a proof that the context contains an element of the
matching type. We can see how the context changes when
introducing a new binding:

data Expr : (Γ : 𝐶𝑡𝑥) (𝜏 : U) → Set where

Let : Expr Γ 𝜎 → Expr (𝜎 :: Γ) 𝜏 → Expr Γ 𝜏

. . .

This allows the definition of a total evaluator using a
matching environment:

eval : Expr Γ 𝜏 → Env Γ → J𝜏K

2.2 Sub-contexts
Note that an expression is not forced to make use of the
whole context to which it has access. Specifically, a let-
binding introduces a new element into the context, but it
might never be used. To reason about the sub-contexts that
are live (actually used), we use order-preserving embeddings
(OPE) [Chapman 2009]. For each element of a context, a
sub-context specifies whether to keep it or not.

data Subset : Ctx → Set where

Empty : Subset []
Drop : Subset Γ → Subset (𝜏 :: Γ)
Keep : Subset Γ → Subset (𝜏 :: Γ)

Such a sub-context describes a context themselves, given
by a function ⌊_⌋ : Subset Γ → Ctx, but it contains more
information than that. For example, the witnesses of a binary
relation ⊆ on sub-contexts are unique, as opposed to working
on contexts directly, e.g. [INT] ⊆ [INT, INT].

Fromnowon,wewill only consider expressions Expr ⌊Δ⌋ 𝜏
in some sub-context. Initially, we take Δ = all Γ : Subset Γ,
the complete sub-context of the original context.



Matthias Heinzel

2.3 Live Variable Analysis
Now we can annotate each expression with its live variables,
the sub-context Δ′ ⊆ Δ that is really used. To that end,
we define annotated expressions LiveExpr Δ Δ′ 𝜏 . While Δ
is treated as Γ before, Δ′ now only contains live variables,
starting with a singleton sub-context at the variable usage
sites.

data LiveExpr : (Δ Δ′ : Subset Γ) (𝜏 : U) → Set where

Let : LiveExpr Δ Δ1 𝜎 →
LiveExpr (Keep Δ) Δ2 𝜏 →
LiveExpr Δ (Δ1 ∪ pop Δ2) 𝜏

. . .

To create such annotated expressions, we need to perform
some static analysis of our source programs. The function
analyse computes the live sub-context Δ′ together with a
matching annotated expression. The only requirement we
have for it is that we can forget the annotations again, with
forget ◦ analyse ≡ id.

analyse : Expr ⌊Δ⌋ 𝜏 → Σ[Δ′ ∈ Subset Γ] LiveExpr Δ Δ′ 𝜏

forget : LiveExpr Δ Δ′ 𝜏 → Expr ⌊Δ⌋ 𝜏

2.4 Transformation
Note that we can evaluate LiveExpr directly, with the main
difference that in the Let-case we match on Δ2 to distinguish
whether the bound variable is live. If it is not, we directly
evaluate the body, ignoring the bound declaration. Another
important detail is that evaluation works under any environ-
ment containing (at least) the live context.

evalLive :
LiveExpr Δ Δ′ 𝜏 → Env ⌊Δ𝑢⌋ → .(Δ′ ⊆ Δ𝑢) → J𝜏K

This optimised semantics shows that we can do a similar
program transformation and will be useful in its correctness
proof. The implementation simply maps each constructor to
its counterpart in Expr, with some renaming (e.g. from ⌊Δ1⌋
to ⌊Δ1 ∪ Δ2⌋) and the abovementioned case distinction.

dbe : LiveExpr Δ Δ′ 𝜏 → Expr ⌊Δ′⌋ 𝜏
dbe (Let {Δ1} {Drop Δ2} 𝑒1 𝑒2) = injExpr2 Δ1 Δ2 (dbe 𝑒2)
dbe . . .

As opposed to forget, which stays in the original context,
here we remove unused variables, only keeping ⌊Δ′⌋.

2.5 Correctness
We want to show that dead binding elimination preserves
semantics: eval◦dbe◦analyse ≡ eval. Since we know that
forget◦analyse ≡ id, it is sufficient to show the following:

eval ◦ dbe ≡ eval ◦ forget
The proof gets simpler if we split it up using the optimised

semantics.

eval ◦ dbe ≡ evalLive ≡ eval ◦ forget
The actual proof statements are more involved, since they

quantify over the expression and environment used. As fore-
shadowed in the definition of evalLive, the statements are
also generalised to evaluation under any Env ⌊Δ𝑢⌋, as long as
it contains the live sub-centext. This gives us more flexibility
when using the inductive hypothesis.

Both proofs work inductively on the expression, with most
cases being a straight-forward congruence. The interesting
one is again Let, where we split cases on the variable being
used or not and need some auxiliary facts about evaluation,
renaming and sub-contexts.

2.6 Iterating the Optimisation
A binding that is removed can contain the only occurrences
of some other variable. This makes another binding dead,
allowing further optimisation when running the algorithm
again. While in our simple setting all these bindings could be
identified in a single pass using strong live variable analysis,
in general it can be useful to simply iterate the optimisation
until a fixpoint is reached.
Such an iteration is not structurally recursive, so Agda’s

termination checker needs our help. We observe that the
algorithm must terminate since the number of bindings de-
creases with each iteration (but the last) and cannot become
negative. This is the same as the ascending chain condition
in program analysis literature [Nielson et al. 2014]. To con-
vince the termination checker, we use well-founded recursion
[Bove et al. 2016] on the number of bindings.
The correctness follows directly from the correctness of

each individual iteration step.

3 Preliminary Results
The implementation and correctness proof of dead binding
elimination are complete, the Agda source code is available
online 1. One interesting observation is that the correctness
proof does not rely on how analyse computes the anno-
tations. At first, this does not seem particularly useful, but
for other optimisations the analysis might use complex, fre-
quently changing heuristics to decide which transformations
are worth it.

We are currently extending the expression language with
𝜆-abstractions. While some increase in complexity is neces-
sary to eliminate applications of functions that do not use
their argument, the correctness proof seems to stay relatively
simple.
1https://git.science.uu.nl/m.h.heinzel/correct-optimisations/-/tree/tyde

https://git.science.uu.nl/m.h.heinzel/correct-optimisations/-/tree/tyde


Provingly Correct Optimisations on Intrinsically Typed Expressions

We are further investigating additional binding-related
transformations, such as moving bindings up or down in the
syntax tree. Another interesting type of optimisation is avoid-
ance of redundant computations using available expression
analysis. An example is common subexpression elimination,
where subexpressions get replaced by variables bound to
equivalent declarations (pre-existing or newly created).

Between the different optimisations, we hope to discover
common patterns and refine our approach, providing useful
strategies for performing optimisations in intrinsically typed
compilers.

References
Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James

McKinna. 2018. A Type and Scope Safe Universe of Syntaxes with
Binding: Their Semantics and Proofs. Proc. ACM Program. Lang. 2, ICFP,

Article 90 (jul 2018), 30 pages. https://doi.org/10.1145/3236785
Lennart Augustsson and Magnus Carlsson. 1999. An exercise in dependent

types: A well-typed interpreter. In Workshop on Dependent Types in
Programming (Gothenburg).

Ana Bove, Alexander Krauss, and Matthieu Sozeau. 2016. Partiality and
Recursion in Interactive Theorem Provers – An Overview. Mathematical
Structures in Computer Science 26, 1 (2016), 38–88. https://doi.org/10.
1017/S0960129514000115

James Maitland Chapman. 2009. Type checking and normalisation. Ph.D.
Dissertation. University of Nottingham. Advisor(s) Altenkirch, Thorsten.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 2014. Principles
of Program Analysis (1st ed.). Springer Berlin, Heidelberg, Germany.
https://doi.org/10.1007/978-3-662-03811-6

Ulf Norell. 2007. Towards a practical programming language based on depen-
dent type theory. Ph.D. Dissertation. Chalmers University of Technology.
Advisor(s) Jansson, Patrik.

Mitchell Pickard and GrahamHutton. 2021. Calculating Dependently-Typed
Compilers (Functional Pearl). Proc. ACM Program. Lang. 5, ICFP, Article
82 (aug 2021), 27 pages. https://doi.org/10.1145/3473587

https://doi.org/10.1145/3236785
https://doi.org/10.1017/S0960129514000115
https://doi.org/10.1017/S0960129514000115
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3473587

	1 Introduction
	2 Dead Binding Elimination
	2.1 Intrinsically Typed Expressions with Binders
	2.2 Sub-contexts
	2.3 Live Variable Analysis
	2.4 Transformation
	2.5 Correctness
	2.6 Iterating the Optimisation

	3 Preliminary Results
	References

