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Abstract
Refinement types is a lightweight yet expressive tool for
specifying and reasoning about programs. The connection
between refinement types and Hoare logic has long been
recognised but the discussion remains largely informal. In
this paper, we present a Hoare-triple style Agda formalisa-
tion of a refinement type system on a small calculus. In our
formalisation, we use shallow Agda terms as the denotation
for the object language and also use Agda as the underlying
logic for the type refinement. To deterministically typecheck
a program with refinement types, we reduce it to the compu-
tation of the weakest precondition and define a verification
condition generator which aggregates all the proof obliga-
tions that need to be fulfilled to witness the well-typedness
of the program.

Keywords: Refinement types, Hoare Logic, Agda

1 Introduction
Refinement types is a lightweight yet expressive tool for
specifying and reasoning about programs. The programmers
annotate their programs with types, which can include pred-
icates to further restrict the inhabitants of that type. For
instance, {𝜈 ∶ ℕ ∣ 𝜈 > 0} is a type for all positive natural
numbers. We typically call the type being refined, namely
ℕ here, the base type, and the logical formula the refinement
predicate.
Refinement types are complicated in several ways. Typi-

cally, a refinement type system supports dependent functions,
which is similar to those in a dependent type system [17]. De-
pendent functions allow the refinement predicate to refer to
the value of the function’s argument. Such term-dependency
also results in the typing contexts being telescopic, meaning
that a type in the context can refer to variables in earlier
entries of that context.

Another complication in refinement type systems is solv-
ing the logical entailment which determines the subtyping
relation between two types. Usually, some tactics based on
syntactic or semantic rewriting will be involved to carefully
transform the entailment into a certain form, to facilitate the
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SMT-solver to automatically discharge the proof obligations.
For the SMT-solving to be decidable, language designers typ-
ically need to restrict the logic of the refinement predicates.
For instance, in Liquid Haskell [33], the quantifier-free logic
of equality, uninterpreted functions and linear arithmetic
(QF-EUFLIA) is used.

Due to these complications, the development on refine-
ment types remains largely informal1 (with the exception
of the work by Lehmann and Tanter [15], to the best of our
knowledge), and ad hoc to some degrees. For instance, the
typing rules of each variant of a refinement type system can
be subtly different, whereas the underlying reasons for the
difference are not always systematically analysed and clearly
attributed.
Refinement types and Hoare logic have some deep con-

nections, which has long been recognised. For example, the
work by Jhala and Vazou [11] makes references to Hoare
logic throughout their development. It summarises the rela-
tionship between the two systems as:

The development […] shows that refinement
types can be viewed as a generalization of Floyd-
Hoare style program logics. Such logics typi-
cally have monolithic assertions that describe
the entire state of the machine at a given pro-
gram point. Types allow us to decompose those
assertions into more fine-grained refinements
on the values of individual terms. Similarly,
pre- and post-conditions correspond directly
to input- and output-types for functions.

In a blog post [10], Jhala further explains why Liquid Types
are different (and in some aspects, superior to) Hoare logic,
with the punchline ”types decompose quantified assertions
into quantifier-free refinements”. With a refinement type
system, in which logical formulas can be put in type posi-
tions, it eliminates the use of universal quantifiers in them,
rendering the verification conditions more decidable in SMT
solvers. It also, due to parametricity of types, provides a way
of relating different objects.
The formal connections between refinement types and

Hoare logic deserve more systematic studies. In this paper,
we present a unifying paradigm – a Hoare-triple style formal-
isation of a refinement type system on a small purely func-
tional language based on λ-calculus. Formalising refinement
types in the Hoare logic style not only allows us to study the
connections between these two systems, it also makes the
1Informal in the sense of lacking machine-checked formalisations.

1
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formalisation easier by avoiding the aforementioned compli-
cations in refinement type systems.The formalisation is done
in Agda [21, 22], a dependently typed theorem prover. In our
formalisation, we use shallow Agda terms as the denotation
for the object language and also use Agda’s type system as
the underlying logic for the type refinement.

In a nutshell, we formulate the typing rules of the refine-
ment type system as Γ❴𝜙❵ ⊢ 𝑒 ∶ 𝑇❴𝜓❵. When reading it as a
regular typing rule, the typing context is split into two parts:
Γ is a list of term variables associated to base types, and 𝜙
contains all the refinement predicates about these variables
in the context. 𝑒 is the expression being typechecked, and
𝑇 and 𝜓 form the refinement type that 𝑒 is checked against.
On the other hand, if we read the rule as a Hoare-triple, 𝑒 is
the program and 𝜙 and 𝜓 are the pre- and post-conditions of
the “execution” of 𝑒.
When we make the analogy between refinement type

systems and Hoare logic, another analogy naturally arises.
The typechecking of a refinement type system has some
connection with the weakest precondition in Hoare logic.
In fact, the idea of using weakest precondition for refine-
ment typechecking is not new. Knowles and Flanagan [12]
has proposed as future work to propagate information back-
wards, calculating the weakest precondition as an avenue
to refinement type reconstruction. In this paper, we explore
how to use backwards reasoning for typechecking, with our
machine-checked formalisation in Agda.

Specifically, this paper makes the following technical con-
tributions:

• We formalise a refinement type system (Section 3 and
Section 4) à la Hoare logic, and prove meta-properties
of the static semantics of the language (Section 5).

• We define a naïve weakest precondition function wp
in lieu of a typechecking algorithm and prove meta-
properties about it (Section 6).

• We refine the formalisation above and present a vari-
ant of the refinement type system which preserves the
contracts imposed by functions (i.e. λ-abstractions),
which requires a more sophisticated weakest precon-
dition function pre and a verification condition gener-
ator vc. We prove the soundness and completeness of
pre and vc with respect to the typing rules (Section 7).

All the formalisation is developed in and checked by Agda
(version 2.6.2.1), and the semantics of the object language
is interpreted as Agda terms. In fact, the main body of this
paper is generated from a literate Agda file, which contains
all the formal development. The source file of this paper can
be obtained at https://github.com/zilinc/ref-hoare.

2 The Key Idea
Typically, a refinement type can be encoded as a Σ-type in
a dependently typed host language. For example, in Agda’s

standard library2, a refinement type is defined as a record
of a value, and an irrelevant proof of a property 𝑃 over the
value:

record Refinement′ {a p} (A : Set a) (P : A → Set p)

: Set (a ⊔ p) where

constructor _,_

field value : A

proof : Irrelevant (P value)

One tedium in defining and working with such an encod-
ing is that the object language also features term-dependent
types. Encoding a dependently-typed language in another
dependently-typed language often involves using inductive-
recursive techniques [8]. The dependent object language
features telescopic contexts in the typing rules. As such, it
poses extra challenges in manipulating the contexts, and in
performing type inference in general, as the dependency in-
duces specific topological orders in solving type constraints.
Realising the connection between refinement types and

Hoare logic can be a rescue. When assigning a refinement
type to a function (we assume that all functions only take
one argument), the refinement predicate on the argument
asserts the properties of the input, and the predicate on the
result type needs to be satisfied by the output. This mim-
ics the structure of a Hoare-triple, in a way that the former
corresponds to the precondition and the latter to the post-
condition. A slightly less obvious correlation is that, in a
typing judgement Γ ⊢ 𝑒 ∶ 𝜏, the refinement predicates in
the typing context Γ correlate to the precondition, and the
refinement predicate in 𝜏 corresponds to the postcondition
of “executing” the expression 𝑒.
With that observation, in a typing judgement 𝑥𝑖 ∶ 𝜏𝑖 ⊢

𝑒 ∶ {𝜈 ∶ 𝐵 ∣ 𝜓(𝑥𝑖, 𝜈)}3 for refinement types, we can pull out
the refinement predicates in ⃗𝜏𝑖, forming a precondition over
the binders in the context, which is analogous to the pre-
condition on the program state in Hoare logic for impera-
tive languages. We aggregate all the refinement predicates
and take their conjunction, which is a predicate of type
𝜙 ∶ base(𝜏𝑖) → Set, where base is a function that extracts
the base type of a refinement type, and Set is the type of
propositions. Similarly, 𝜓 can be deemed as the postcondition
after 𝑒 has been executed. In a purely functional language, it
amounts to a predicate over the value of 𝑒 and the variables
𝑥𝑖 in the context.

The Hoare-triple view of refinement types has many ben-
efits. Firstly, it separates the typechecking of the base types
and the that of the refinement predicates, which is a common
practice in refinement typed languages (e.g. [12, 29, 30]). In
our system, the “type system” is simply-typed, whose type

2Our Agda development uses the following commit of agda-stdlib: https:
//github.com/agda/agda-stdlib/blob/95270b78d/src/Data/Refinement.agda
3We use an ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃗overhead arrow to denote an ordered vector, and an
overhead line for an unordered list.

2

https://github.com/zilinc/ref-hoare
https://github.com/agda/agda-stdlib/blob/95270b78d/src/Data/Refinement.agda
https://github.com/agda/agda-stdlib/blob/95270b78d/src/Data/Refinement.agda
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inference is well-established. With the base types out of the
way, it allows us to focus on the refinements. Secondly, the
separation of types and predicates means that there is no
longer any term-dependency in types, and there is no tele-
scopic contexts any more. It makes the formalisation and the
reasoning of the system drastically simpler. In the predicates
𝜙 and 𝜓 above, the variables 𝑥𝑖 no longer need to maintain
any particular order.
In our formalisation, we factor out the automation of

a decidable type inference algorithm with an SMT-solver,
which is often desirable in refinement typed languages. In
the small calculus that we study, we require all functions
(λ-abstractions) to be annotated with types and they are the
only places that type annotations are needed. We only per-
form typechecking, without elaborating the entire syntax
tree. To deterministically typecheck a program with refine-
ment types, we reduce it to the computation of the weakest
precondition and define a verification condition generator
which aggregates all the proof obligations that need to be
fulfilled to witness the well-typedness of the program. The
proof of the verification conditions are left to the users, who
serve as an oracle for solving all logic puzzles.

3 The Base Language 𝜆𝐵
Our journey starts with a simply-typed base language 𝜆𝐵
without any refinement. The 𝜆𝐵 language is based on the
λ-calculus, but without recursion or higher-order functions.
The syntax of the 𝜆𝐵 is shown in Figure 1. It has ground types
of unit (𝟙), bool (𝟚) and natural numbers (ℕ), and product
types. These types are called base types, meaning that they
are the types that can be refined. Namely, they can appear
in the base type position 𝐵 in a typical refinement type {𝜈∶
𝐵 ∣ 𝜙}. The term language is very standard, consisting of
variables (𝑥), constants of the ground types, pairs, the first
and second projections (𝜋1 and 𝜋2), function applications
(denoted by juxtaposition), if-conditionals, non-recursive
local let-bindings, and some arithmetic operations.

The syntax of the term language is largely canonical with
one peculiarity, which is how functions are defined. For rea-
sons that wewill see later whenwe come to the formalisation
of refinement types, we define function types and function
terms (λ-abstractions) as their own syntactic groups. The
main purpose is that we can later define inductive rules and
functions on types and expressions in a syntactic manner. As
we will see later, the Agda formalisation of the language is
interpreted in a tagless manner [1]. This syntactic distinction
injects a little bit of taggedness to it, allowing us to dispatch
depending on the syntax of the objects more easily. Concep-
tually, this distinction is not always relevant, especially in
the pen-and-paper formalisation. Therefore whenever possi-
ble, we only define a single inductive definition or function
on paper, and it maps to two definitions or functions in the
Agda formalisation.

base types 𝐵, 𝑆, 𝑇 ⩴ 𝟙 ∣ 𝟚 ∣ ℕ ∣ 𝑆 × 𝑇
func. types ∋ 𝑆⟶𝑇
expressions 𝑒 ⩴ 𝑥 ∣ () ∣ true ∣ false

∣ ze ∣ su 𝑒
∣ (𝑒, 𝑒) ∣ 𝜋1 𝑒 ∣ 𝜋2 𝑒 ∣ 𝑓 𝑒
∣ if 𝑐 then 𝑒1 else 𝑒2
∣ let 𝑥 = 𝑒1 in 𝑒2
∣ 𝑒1 + 𝑒2 ∣ 𝑒1 − 𝑒2 ∣ 𝑒1 < 𝑒2

functions 𝑓 ⩴ 𝜆𝑥.𝑒
contexts Γ ⩴ ⋅ ∣ Γ, 𝑥 ∶ 𝑆

Figure 1. Syntax of the language 𝜆𝐵

Since its typing rule is very standard, we directly show
how we encode it in Agda and use it as a tutorial on how we
construct the language in Agda. We use an encoding directly
derived from McBride’s Kipling language [18], which allows
us to index the syntax of the object language with its type
in Agda. It effectively lets Agda to perform typechecking
up to simple types as we construct the syntax of the term
language.

We first introduce some auxiliaries before diving into the
Agda definition of 𝜆𝐵. For more details of the general set up,
we recommend readers to consult McBride [18]’s work.

McBride [18] uses inductive-recursive definitions [8] for
the dependent types in his object language, which is a pretty
standard technique used in embedding dependently type
languages(e.g. [3, 4]). In our base language (and also later
with refinement types), however, since term-dependency in
types has been eliminated, the inductive-recursive definition
of the universe à la Tarski and its interpretation is not needed.
Nevertheless, we choose to use the vocabulary from that lines
of work since the formalisation is heavily inspired by them.
We define a universe U of deep base types, and an inter-

pretation function E ⟦_⟧Ty which maps the syntax to Agda
types. We do not include a code for function types; they will
be handled by the typing rules separately.

data U : Set where

‵1′ ‵2′ ‵ℕ′ : U

_‵×′_ : U → U → U

⟦_⟧τ : U → Set

⟦ ‵1′ ⟧τ = ⊤

⟦ ‵2′ ⟧τ = Bool

⟦ ‵ℕ′ ⟧τ = ℕ

⟦ S ‵×′ T ⟧τ = ⟦ S ⟧τ × ⟦ T ⟧τ

Following the work on semantic typing [19, 34], we define
what it means for a denotational value to possess a type.

Definition 3.1. A denotational value 𝑣 possesses a type 𝑇,
written ⊨ 𝑣 ∶ 𝑇, if 𝑣 is a member of the semantic domain
corresponding to the type 𝑇.

Next, we define the typing context for the simply-typed
language 𝜆𝐵, and the denotation of the context in terms of

3
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a nested tuple of Agda values. The denotation of the typing
context gives us a semantic environment 𝛾, mapping variables
to denotational values in Agda. The semantic environment
𝛾 obtained from the denotation function respects the typing
context in the sense that for all 𝑥 ∈ dom(Γ), ⊨ 𝛾(𝑥) ∶ Γ(𝑥).

The typing context and its denotation function E ⟦_⟧Cx are
defined in Agda as follows:

data Cx : Set where

‵Ε′ : Cx

_▸_ : Cx → U → Cx

⟦_⟧C : Cx → Set

⟦ ‵Ε′ ⟧C = ⊤

⟦ Γ ▸ S ⟧C = ⟦ Γ ⟧C × ⟦ S ⟧τ

The context is nameless and uses de Bruijn indices for
context operations, with the rightmost (also outermost) ele-
ment bound most closely. Unlike Kipling [18], the direction
to which the context grows is largely irrelevant, since the
context is not telescopic. We define the syntax for context
lookup and its interpretation in Agda:

data _∋_ : (Γ : Cx)(T : U) → Set where

top : ∀{Γ}{T} → Γ ▸ T ∋ T

pop : ∀{Γ}{S T} → Γ ∋ T → Γ ▸ S ∋ T

⟦_⟧∋ : ∀{Γ}{T} → Γ ∋ T → (γ : ⟦ Γ ⟧C) → ⟦ T ⟧τ

⟦ top ⟧∋ (_ , t) = t

⟦ pop i ⟧∋ (γ , _) = ⟦ i ⟧∋ γ

We introduce a few combinators that are helpful in simpli-
fying the presentation. ᵏ and ˢ are the 𝐾 and 𝑆 combinators
from the SKI calculus and ˄ and ˅ are synonyms for the
currying and uncurrying functions respectively.

The syntax of the language is defined in Agda as follows:

data _⊢_ (Γ : Cx) : U → Set

data _⊢_⟶_ (Γ : Cx) : U → U → Set

data _⊢_ Γ where

VAR : ∀{T} → Γ ∋ T → Γ ⊢ T

UNIT : Γ ⊢ ‵1′

TT : Γ ⊢ ‵2′

FF : Γ ⊢ ‵2′

ZE : Γ ⊢ ‵ℕ′

SU : Γ ⊢ ‵ℕ′ → Γ ⊢ ‵ℕ′

IF : ∀{T} → Γ ⊢ ‵2′ → Γ ⊢ T → Γ ⊢ T → Γ ⊢ T

LET : ∀{S T} → Γ ⊢ S → Γ ▸ S ⊢ T → Γ ⊢ T

PRD : ∀{S T} → Γ ⊢ S → Γ ⊢ T → Γ ⊢ (S ‵×′ T)

FST : ∀{S T} → Γ ⊢ S ‵×′ T → Γ ⊢ S

SND : ∀{S T} → Γ ⊢ S ‵×′ T → Γ ⊢ T

APP : ∀{S T} → Γ ⊢ S ⟶ T → Γ ⊢ S → Γ ⊢ T

ADD : Γ ⊢ ‵ℕ′ → Γ ⊢ ‵ℕ′ → Γ ⊢ ‵ℕ′

MINUS : Γ ⊢ ‵ℕ′ → Γ ⊢ ‵ℕ′ → Γ ⊢ ‵ℕ′

LT : Γ ⊢ ‵ℕ′ → Γ ⊢ ‵ℕ′ → Γ ⊢ ‵2′

data _⊢_⟶_ Γ where

FUN : ∀{S T} → Γ ▸ S ⊢ T → Γ ⊢ S ⟶ T

We index the type of the deep terms with the typing con-
text and the type of the term. Therefore the terms respect
the typing rules by construction. The syntax for the term
language (and also its typing rules) is very standard. We
only mention that in a function application APP, only func-
tion expressions can be applied to an argument. FUN has the
same type as a normal first-class λ-abstraction does. It can
be constructed under any context Γ, and it supports closures.

In our language, arithmetic operations are defined as prim-
itive language constructs. We deviate from McBride [18]’s
generic recursion principle REC for natural numbers, as it
is very cumbersome to define other language constructs in
terms of REC, and also because our types in the object lan-
guage are not dependent. We discuss the implications of
adding general recursion to the refinement typed language
at the end of the paper.
As a simple example, if we want to define a top-level

function

𝑓0 ∶ ℕ → ℕ

𝑓0 = 𝜆𝑥. 𝑥 + 1

it can be done in Agda as

f₀ : ∀{Γ} → Γ ⊢ ‵ℕ′ ⟶ ‵ℕ′

f₀ = FUN (ADD ONE (VAR top))

where ONE is defined to be SU ZE. Note that the function’s
type is parametric in the context Γ.
The interpretation of the terms langauge is entirely stan-

dard, mapping object language terms to values of their cor-
responding Agda types. On paper, we write E ⟦_⟧Tm for the
denotation function, which takes a deep term and a semantic
environment and returns the Agda denotation.

⟦_⟧⊢ : ∀{Γ}{T} → Γ ⊢ T → ⟦ Γ ⟧C → ⟦ T ⟧τ

⟦_⟧⊢ ⃗ : ∀{Γ}{S T} → Γ ⊢ S ⟶ T → ⟦ Γ ⟧C → ⟦ S ⟧τ → ⟦ T ⟧τ

⟦ VAR x ⟧⊢ = ⟦ x ⟧∋

⟦ UNIT ⟧⊢ = ᵏ tt

⟦ TT ⟧⊢ = ᵏ true

⟦ FF ⟧⊢ = ᵏ false

⟦ ZE ⟧⊢ = ᵏ 0

⟦ SU e ⟧⊢ = ᵏ suc ˢ ⟦ e ⟧⊢

⟦ IF c e₁ e₂ ⟧⊢ = (if_then_else_ ∘ ⟦ c ⟧⊢) ˢ ⟦ e₁ ⟧⊢ ˢ ⟦ e₂ ⟧⊢

⟦ LET e₁ e₂ ⟧⊢ = ˄ ⟦ e₂ ⟧⊢ ˢ ⟦ e₁ ⟧⊢

⟦ PRD e₁ e₂ ⟧⊢ = < ⟦ e₁ ⟧⊢ , ⟦ e₂ ⟧⊢ >

⟦ FST e ⟧⊢ = proj₁ ∘ ⟦ e ⟧⊢

⟦ SND e ⟧⊢ = proj₂ ∘ ⟦ e ⟧⊢

⟦ APP f e ⟧⊢ = ⟦ f ⟧⊢ ⃗ ˢ ⟦ e ⟧⊢

⟦ ADD e₁ e₂ ⟧⊢ = ᵏ _+_ ˢ ⟦ e₁ ⟧⊢ ˢ ⟦ e₂ ⟧⊢

⟦ MINUS e₁ e₂ ⟧⊢ = ᵏ _-_ ˢ ⟦ e₁ ⟧⊢ ˢ ⟦ e₂ ⟧⊢

⟦ LT e₁ e₂ ⟧⊢ = ᵏ _<ᵇ_ ˢ ⟦ e₁ ⟧⊢ ˢ ⟦ e₂ ⟧⊢

⟦ FUN e ⟧⊢ ⃗ = ˄ ⟦ e ⟧⊢
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ref. types 𝜏 ⩴ {𝜈∶𝐵 ∣ 𝜙}
func. types ∋ 𝑥∶𝜏⟶𝜏 (dep. functions)
expressions ̂𝑒 ⩴ … (same as 𝜆𝐵)

∣ ̂𝑒 ∷ 𝜏 (upcast)
functions ̂𝑓 ⩴ 𝜆𝑥. ̂𝑒
ref. contexts Γ̂ ⩴ Γ; 𝜙
predicates 𝜙, 𝜉, 𝜓 ⩴ … (a logic of choice)

Figure 2. Syntax for the language 𝜆𝑅

The denotation of the above f₀ function under any seman-
tic environment 𝛾 is:

⟦f₀⟧⊢ : ∀{Γ}{γ : ⟦ Γ ⟧C} → ℕ → ℕ

⟦f₀⟧⊢ {γ = γ} = ⟦ f₀ ⟧⊢ ⃗ γ

Evaluating this term in Agda results in a λ-term: λ x → suc x,
independent of the environment 𝛾.

4 Refinement Typed Language 𝜆𝑅
Adding refinement predicates to the 𝜆𝐵 typing judgement
results in the typing judgement for the refinement typed
language 𝜆𝑅. We first present the syntax of the language in
Figure 2, in addition to Figure 1.4 The upcast operator for
non-function expressions is used to make any subtyping
explicitly in the typing tree.
Apart from the way we organise function arrows in re-

finement types as mentioned above, another difference is
how typing contexts are defined. Instead of a vector of 𝑥𝑖 ∶ 𝜏𝑖
entries, we separate the predicates and the base types. The
context therefore becomes Γ; 𝜙, where Γ ⩴ 𝑥𝑖 ∶ base(𝜏𝑖) and
𝜙 is the conjunction of the predicates gathered from 𝜏𝑖s.These
two formulations are informally equivalent. Typically, in a
typing context of the form 𝑥𝑖 ∶ 𝜏𝑖, where each 𝜏𝑖 is a refine-
ment type, additional (path sensitive) constraints can be
added to the context in Γ ⊢ 𝑒 ∶ 𝜏 by introducing a fresh vari-
able of an arbitrary base type, such as 𝑦 ∶ {𝜈∶ 𝟙 ∣ 𝜙}, where
𝑦 is not free in 𝑒 and 𝜈 is not free in 𝜙. In our formulation,
this is made even easier; additional conjuncts can be added
to predicate 𝜙 directly.

We define predicates as a shallow function in Agda, from
a vector of variables that are in the domain of a semantic
environment to the Agda Set. We also define a substitution
function in Agda which allows us to substitute the top-most
variable in a predicate by an expression.

-- substitution

4As a remark on the notation, when we talk about the dependent function
types in our language, we use a slightly longer function arrow ⟶ as a
reminder that it is not a first-class type constructor. The typesetting is only
subtly different from the normal function arrow→ and in fact its semantics
is similar to the normal function arrow. So in reading and understanding
the rules, they can be considered identical.

Γ̂ wf

FV(𝜙) ⊆ dom(Γ)

Γ; 𝜙 wf
Ctx-Wf

Γ ⊢ {𝜈∶𝐵 ∣ 𝜓} wf

FV(𝜓) ⊆ dom(Γ) ∪ {𝜈}

Γ ⊢ {𝜈∶𝐵 ∣ 𝜓} wf
RefType-Wf

Figure 3. Well-formedness rules for contexts and types

_[_]s : ∀{Γ}{T} → (ϕ : ⟦ Γ ▸ T ⟧C → Set) → (e : Γ ⊢ T)

→ (⟦ Γ ⟧C → Set)

ϕ [ e ]s = ˄ ϕ ˢ ⟦ e ⟧⊢

In Figure 3, we show the well-formedness rules for the
refinement contexts and for the refinement types. They are
checked by Agda’s type system and are therefore implicit
in the Agda formalisation. The typing rules can be found
in Figure 4. Most of the typing rules are straightforward
and work in a similar manner to their counterparts in a
more traditional formalisation of refinement types. We only
elaborate on a few of them.

Variables. The VARR rule infers the most precise type,
the singleton type, for variable 𝑥. In many other calculi (e.g.
[11, 13, 27]), a selfification rule is used for variables:

(𝑥 ∶ {𝜈∶𝐵 ∣ 𝜙}) ∈ Γ

Γ ⊢ 𝑥 ∶ {𝜈∶𝐵 ∣ 𝜙 ∧ 𝜈 ≡ 𝑥}
Self

We choose not to include the 𝜙 in the inferred type of 𝑥, as
such information can be recovered from the context Γ via
the subtyping rule SUBR.

Constants. For value constants ((), true, false, ze) and
function constants (+, −, <, (_, _), 𝜋1, 𝜋2, su), we always infer
the exact types for the results. As with the VARR rule, we
do not keep the refinement predicates in the premises in the
refinement type in the conclusion. Again, no information is
lost during this process, as they can be recovered later from
the context when needed. In practice, a minor drawback is
that, some of the proofs will need to be reconstructed. But
luckily, most of the time we can simply assign intermediate
expressions (i.e. those in the premises in the rules) trivial
refinement types.

Let-bindings. In the LETR rule, 𝜙, as usual, is the predicate
over the context Γ. 𝜉 is a predicate on the entries in the
context Γ and the let-binder 𝑥. The former can be inferred by
the fact that 𝜙 appears in Γ; 𝜙, and the latter by 𝜉 being the
refinement predicate of 𝑒1. What is worth noting is that we
have to explicitly state that {𝜈 ∶𝑇 ∣ 𝜓} is wellformed under
the context Γ instead of the extended Γ, 𝑥 ∶ 𝑆. This way we
ensure that 𝜓 does not mention the locally bound variable 𝑥
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Γ̂ ⊢𝑅 ̂𝑒 ∶ 𝜏

(𝑥 ∶ 𝑇) ∈ Γ

Γ; 𝜙 ⊢𝑅 𝑥 ∶ {𝜈∶𝑇 ∣ 𝜈 = 𝑥}
VARR

Γ̂ ⊢𝑅 () ∶ {𝜈∶𝟙 ∣ 𝜈 = ()}
UNITR

𝑏 ∈ {true, false}

Γ̂ ⊢𝑅 𝑏 ∶ {𝜈∶𝟚 ∣ 𝜈 = 𝑏}
TTR/FFR

Γ̂ ⊢𝑅 ze ∶ {𝜈∶ℕ ∣ 𝜈 = 0}
ZER

Γ̂ ⊢𝑅 ̂𝑒 ∶ {𝜈∶ℕ ∣ 𝜓}

Γ̂ ⊢𝑅 su ̂𝑒 ∶ {𝜈∶ℕ ∣ 𝜈 = suc ̂𝑒}
SUR

Γ; 𝜙 ⊢𝑅 ̂𝑐 ∶ {𝜈∶𝟚 ∣ 𝜓′}
Γ; 𝜙 ∧ ̂𝑐 ⊢𝑅 ̂𝑒1 ∶ {𝜈∶𝑇 ∣ 𝜓} Γ; 𝜙 ∧ ¬ ̂𝑐 ⊢𝑅 ̂𝑒2 ∶ {𝜈∶𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢𝑅 if ̂𝑐 then ̂𝑒1 else ̂𝑒2 ∶ {𝜈∶𝑇 ∣ 𝜓}
IFR

Γ; 𝜙 ⊢𝑅 ̂𝑒1 ∶ {𝑥∶𝑆 ∣ 𝜉} Γ ⊢ {𝜈∶𝑇 ∣ 𝜓} wf
Γ, 𝑥 ∶ 𝑆; 𝜙 ∧ 𝜉 ⊢𝑅 ̂𝑒2 ∶ {𝜈∶𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢𝑅 let 𝑥 = ̂𝑒1 in ̂𝑒2 ∶ {𝜈∶𝑇 ∣ 𝜓}
LETR

Γ̂ ⊢𝑅 ̂𝑒1 ∶ {𝜈∶𝑆 ∣ 𝜓1} Γ̂ ⊢𝑅 ̂𝑒2 ∶ {𝜈∶𝑇 ∣ 𝜓2}

Γ̂ ⊢𝑅 ( ̂𝑒1, ̂𝑒2) ∶ {𝜈∶𝑆 × 𝑇 ∣ 𝜈 = ( ̂𝑒1, ̂𝑒2)}
PRDR

Γ̂ ⊢𝑅 ̂𝑒 ∶ {𝜈∶𝑇1 × 𝑇2 ∣ 𝜓} 𝑖 ∈ {1, 2}

Γ̂ ⊢𝑅 𝜋𝑖 ̂𝑒 ∶ {𝜈∶𝑇𝑖 ∣ 𝜈 = 𝜋𝑖 ̂𝑒}
FSTR/SNDR

Γ; 𝜙 ⊢𝑅 ̂𝑓 ∶ 𝑥∶{𝜈∶𝑆 ∣ 𝜉}⟶{𝜈∶𝑇 ∣ 𝜓} 𝑥 ∉ Dom(Γ)
Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈∶𝑆 ∣ 𝜉}

Γ; 𝜙 ⊢𝑅 ̂𝑓 ̂𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓[ ̂𝑒/𝑥]}
APPR

Γ̂ ⊢𝑅 ̂𝑒1 ∶ {𝜈∶ℕ ∣ 𝜓1}
Γ̂ ⊢𝑅 ̂𝑒2 ∶ {𝜈∶ℕ ∣ 𝜓2} ⊕ ∈ {+,−,<}

Γ̂ ⊢ ̂𝑒1 ⊕ ̂𝑒2 ∶ {𝜈∶ℕ ∣ 𝜈 = ̂𝑒1 ⊕ ̂𝑒2}
ADDR/MINUSR/LTR

Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈∶𝑆 ∣ 𝜓} Γ, 𝑥 ∶ 𝑆; 𝜙 ⊨ 𝜓 ⇒ 𝜓′

Γ; 𝜙 ⊢𝑅 ̂𝑒 ∷ {𝜈∶𝑆 ∣ 𝜓′}
SUBR

Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈∶𝑆 ∣ 𝜓} Γ ⊨ 𝜙′ ⇒ 𝜙

Γ; 𝜙′ ⊢𝑅 ̂𝑒 ∶ {𝜈∶𝑆 ∣ 𝜓}
WEAKR

Γ̂ ⊢ ̂𝑓 ∶ 𝑥∶𝜏1⟶𝜏2

Γ, 𝑥 ∶ 𝑆; 𝜉 ⊢ ̂𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢ 𝜆𝑥.𝑒 ∶ 𝑥∶{𝜈∶𝑆 ∣ 𝜉}⟶{𝜈∶𝑇 ∣ 𝜓}
FUNR

Figure 4. Static semantics of 𝜆𝑅

and leaks the implementation details of 𝑒1 into the resulting
type.

Function applications. The typing rule for function ap-
plication is pretty standard. In the work of Knowles and
Flanagan [13], a compositional version of this rule is used
instead. To summarise the key idea, consider the following

rule. A typical function application rule (including ours) has
the following form:

Γ ⊢ 𝑓 ∶ (𝑥∶𝜏1) → 𝜏2 Γ ⊢ 𝑒 ∶ 𝜏′1 Γ ⊢ 𝜏′1 ⊑ 𝜏1
Γ ⊢ 𝑓 𝑒 ∶ 𝜏2[𝑒/𝑥]

(1)

In the resulting type, the term 𝑒 is substituted for 𝑥. This
would get around the type abstraction on 𝑒, exposing the
implementation details of the argument to the resulting re-
finement type 𝜏2[𝑒/𝑥], and also rendering the type 𝜏2[𝑒/𝑥]
arbitrarily large due to the presence of 𝑒. To rectify this prob-
lem, Knowles and Flanagan [13] propose the result type to
be existential: ∃𝑥 ∶ 𝜏′1. 𝜏2. Which application rule to include
largely depends on the language design, and appears to be
orthogonal to the focus of this paper. We use the traditional
one here and the compositional one later in this paper as a
comparison.
Jhala and Vazou [11] sticks to the regular function appli-

cation rule, but with some extra restrictions. They require
the function argument to be in A-normal form (ANF) [31],
i.e. the argument being a variable instead of an arbitrary
expression. This reduces the load on the SMT-solver and
helps them remain decidable in the refinement logic. We do
not need the ANF restriction in our system for decidability,
and the argument term will always be fully reduced in Agda
while conducting the meta-theoretic proofs.

Subtyping and weakening. Key to a refinement type
system is the subtyping relation between types. Typically,
the subtyping judgement looks like:

Γ, 𝑥 ∶ 𝑆 ⊨ 𝜙 ⇒ 𝜙′

Γ ⊢ {𝜈∶𝑆 ∣ 𝜙} ⊑ {𝜈∶𝑆 ∣ 𝜙′}
Sub

Γ ⊢ 𝑆2 ⊑ 𝑆1 Γ, 𝑥 ∶ 𝑆2 ⊢ 𝑇1 ⊑ 𝑇2
Γ ⊢ 𝑥 ∶ 𝑆1 → 𝑇1 ⊑ 𝑥 ∶ 𝑆2 → 𝑇2

Sub-Fun

The subtyping rules are (at least partly) syntactic. In our
language, since we do not yet support higher-order func-
tions, the subtyping rule for functions is not needed. It can
be achieved by promoting the argument and promoting the
result of a function application. The syntactic distinction in
our formalisation allows us to define subtyping exclusively
for non-function typed expressions. If we included function
types in the group of base types, and allowed refinement
predicates over function spaces, the syntax would be quite
a bit simpler than it is now. However it would then require
a full semantic subtyping relation that also works on the
function space. This has been shown to be possible, for ex-
ample interpreting the types in a set-theoretic fashion as in
Castagna and Frisch [2]’s work. It is however far from trivial
to encode a set theory that can be used for the interpretation
of functions in Agda’s type system (e.g. [14] is an attempt to
define Zermelo–Fraenkel set theory ZF in Agda).

In our system, we directly define the subtyping-style rules
(SUBR, WEAKR) in terms of logical entailments: 𝜙 ⊨ 𝜓 ⇒
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def
= ∀𝛾 𝑥. 𝜙 𝛾 ∧ 𝜓 (𝛾, 𝑥) → 𝜓′ (𝛾, 𝑥). This is made possible

because the predicates are separate from the types in our
formalisation.

The subtyping rule (SUBR) and theweakening rule (WEAKR)
roughly correspond to the left- and right- consequence rules
of Hoare logic respectively. All the subtyping in our system
is explicit. For instance, unlike rule (1) above, in order to
apply a function, we have to explicitly promote the argu-
ment with a SUBR node, if its type is not already matching
the argument type expected by the function. As a notational
convenience, in the typing rules we write Γ̂ ⊢ ̂𝑒 ∷ 𝜏 to mean
Γ̂ ⊢ ̂𝑒 ∷ 𝜏 ∶ 𝜏, as the inferred type is always identical to the
one that is promoted to.

Comparing the SUBR rule with the right-consequence rule
in Hoare logic, which reads

{𝑃} 𝑠 {𝑄} 𝑄 → 𝑄′

{𝑃} 𝑠 {𝑄′}
Cons-R

we can notice that in the SUBR rule, the implication says
𝜙 ⊨ 𝜓 ⇒ 𝜓′. In Cons-R, on the contrary, the precondition
𝑃 is not involved in the implication. The is because of the
nature of the underlying language. In an imperative language
to which the Hoare logic is applied, 𝑃 and 𝑄 are predicates
on the program states, which typically include mappings
from variables to values. A variable assignment statement or
reference update operation will change the state. Therefore
after the execution of statement 𝑠, the predicate 𝑃 is no longer
true and all the relevant information are stored in 𝑄. In our
purely functional language 𝜆𝑅, 𝜙 is a predicate on the typing
context Γ. The typing judgement does not invalidate the
predicate 𝜙. Moreover, in practice, the user of a refinement
type systemwill only state predicates of the term being typed,
without including information about other variables that are
not directly relevant. Therefore it is technically possible not
to require 𝜙 in the implication, but it renders the system
really unwieldy to use in practice.

As for the weakening rule, contrary to the more canonical
structural weakening rule [15]:

⊢ Γ1, Γ2, Γ3 Γ1, Γ3 ⊢ 𝑒 ∶ 𝑇

Γ1, Γ2, Γ3 ⊢ 𝑒 ∶ 𝑇

our weakening rule only changes the predicates in the con-
text; it does not touch the simply-typed portion of the con-
text and does not allow for adding new binders to the con-
text. It compares favourably to those with a more syntactic
refinement-typing context. When the context is defined as
⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃗𝑥𝑖 ∶ {𝜈∶𝐵𝑖 ∣ 𝜙𝑖}, if the weakening lemma is to be defined in
a general enough manner to allow weakening to happen
arbitrarily in the middle of the context, some tactics will
be required to syntactically rearrange the context to make
the weakening rule applicable. Our weakening rule is purely
semantic and therefore does not require syntactic rewriting
before it can be applied.

Functions. The FUNR rule can construct a λ-abstraction
under any context Γ and closure is supported. The function
body ̂𝑒 is typed under the extended context Γ, 𝑥 ∶ 𝑆, but the
predicate part does not include 𝜙. This does not cause any
problems because 𝜉 is itself a predicate over the context and
the function argument, and also if more information about
the context needs to be drawn, it can be done via the SUBR

rule at a later stage.

* * *

The pen-and-paper formalisation above is not very formal
in every aspect. One discrepancy is that, when we type the
term ̂𝑒1 + ̂𝑒2, the resulting predicate is 𝜈 = ̂𝑒1 + ̂𝑒2. What has
been implicit in the rules is the reflection of program objects
into the logical system.
In our formal development, the underlying logical sys-

tem is Agda’s type system, therefore we want to reflect the
refinement-typed term language into the Agda land. We do
it as a two-step process: we first map the refinement-typed
language to the simply-typed language by erasure, and then
reflect the simply-typed program terms into logic using the
already-defined interpretation function ⟦_⟧⊢, with which we
interpret the object language as Agda terms.

Definition 4.1 (Erasure). Theerasure function ⌜_⌝R removes
all refinement type information from an refinement-typed
term (also, typing tree) and returns a corresponding simply-
typed term (also, typing tree).

Essentially, the erasure function removes the refinement
predicates, and any explicit upcast from the typing tree.
Now we can define the deep syntax of the 𝜆𝑅 language

along with its typing rules in Agda. When an expression
𝑒 in the object language has an Agda type Γ ❴ ϕ ❵⊢ T ❴ ψ

❵ , it means that under context Γ which satisfies the pre-
condition 𝜙, the expression 𝑒 can be assigned a refinement
type {𝜈∶𝑇 ∣ 𝜓(𝑥𝑖, 𝜈)}, where 𝑥𝑖 are the entries in the context
Γ. For functions, we have a data type Γ ❴ ϕ ❵⊢ S ❴ ξ ❵⟶
T ❴ ψ ❵ which keeps track of the predicates on the context
Γ, on the argument and on the result respectively. The data
type and the erasure function ⌜_⌝R are inductive-recursively
defined.

The context weakening rule WEAKR in Figure 4 is in fact
admissible in our system, therefore it is not included as a
primitive construct in the formal definition of the language.

Lemma 4.2 (Weakening is admissible). For any typing tree
Γ; 𝜙 ⊢ ̂𝑒 ∶ 𝜏, if 𝜙′ ⇒ 𝜙 under the semantic environement 𝛾
that respects Γ, then there exists a typing tree with the stronger
context Γ; 𝜙′, such that Γ; 𝜙′ ⊢ ̂𝑒′ ∶ 𝜏 and ⌜ ̂𝑒⌝R = ⌜ ̂𝑒′⌝R.

Proof. By induction on ̂𝑒. �

Continuing on the previously defined f₀ function, if we
want to lift it to a function definition in 𝜆𝑅, we will need to

7



771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

TyDe’22, 11 September, 2022, Ljubljana, Slovenia Zilin Chen

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

insert some explicit upcast nodes:

𝑓R0 ∶ (𝑥∶{𝜈∶ℕ ∣ 𝜈 < 2}) → {𝜈∶ℕ ∣ 𝜈 < 4}

𝑓R0 = 𝜆𝑥. (𝑥 + 1 ∷ {𝜈∶ℕ ∣ 𝜈 < 4})

In Agda, it is defined as follows:

f₀R : ‵Ε′ ❴ ᵏ ⊤ ❵⊢ ‵ℕ′ ❴ (_< 2) ∘ proj₂ ❵⟶
‵ℕ′ ❴ (_< 4) ∘ proj₂ ❵

f₀R = FUNR (SUBR (ADDR (VARR top) ONER)

_ λ (_ , s) t s<2 t≡s+1 →

s<2⇒t≡s+1⇒s+1<4 s<2 t≡s+1)

The upcast node SUBR needs to be accompanied by an
evidence (i.e. an Agda proof object) to justify the semantic
entailment 𝑥 < 2 ⊨ 𝜈 = 𝑥 + 1 ⇒ 𝜈 < 4.

To demonstrate the function application of f₀R, we define
the following expression:

𝑒𝑥R0 ∶ {𝜈∶ℕ ∣ 𝜈 < 5}

𝑒𝑥R0 = 𝑓R0 (1 ∷ {𝜈∶ℕ ∣ 𝜈 < 2}) ∷ {𝜈∶ℕ ∣ 𝜈 < 5}

The inner upcast is for promoting the argument 1, which is
inferred the exact type {𝜈∶ℕ ∣ 𝜈 = 1}, to match the contract
laid out by the function 𝑓R0 ’s type signature. The outer upcast
is to promote from the designated 𝑓R0 ’s result type {𝜈 ∶ ℕ ∣
𝜈 < 4} to {𝜈∶ℕ ∣ 𝜈 < 5}.
In Agda, two proof terms need to be constructed for the

upcast nodes in order to show that the argument and the
result of the application are both type correct:

ex₀R : ‵Ε′ ❴ ᵏ ⊤ ❵⊢ ‵ℕ′ ❴ (_< 5) ∘ proj₂ ❵

ex₀R = SUBR (APPR {ψ = (_< 4) ∘ proj₂}

f₀R

(SUBR ONER _ λ _ _ _ s≡1 →

s≡1⇒s<2 s≡1))

_ λ _ _ _ t<4 → t<4⇒t<5 t<4

5 Meta-Properties of 𝜆𝑅
Instead of proving the textbook type soundness theorems
(progress and preservation) [9, 34] that rest upon subject
reduction, we instead get for free the type soundness theorem
à la Milner [19] that is based on denotational semantics.

Theorem 5.1 (Semantic soundness). If Γ ⊢ 𝑒 ∶ 𝑇 and the
semantic environment 𝛾 respects the typing environment Γ,
then ⊨ E ⟦𝑒⟧Tm𝛾 ∶ 𝑇.

The shallow denotation of the simply-typed term language
automatically guarantees that the Agda denotation of a term
possesses the type to which the type system of 𝜆𝐵 assigns the
term. The theorem above, however, does not state the type
soundness property of refinement types. Next we introduce
the formalisation of the refinement soundness theorem. We
use the notation 𝜙 ⊨ 𝜓 for the semantic entailment relation
in the underlying logic, which, in our case, is Agda’s type
system.

Definition 5.2. A semantic environment 𝛾 satisfies a predi-
cate 𝜙, if FV(𝜙) ⊆ dom(𝛾) and ∅ ⊨ 𝜙 𝛾. We write 𝜙 𝛾 to mean
𝜙[𝛾(𝑥𝑖)/𝑥𝑖] for all free variables 𝑥𝑖 in 𝜙.

We can give meanings to refinement types in the following
way:

Definition 5.3. A value 𝑣 posesses a refinement type {𝜈 ∶
𝑇 ∣ 𝜓}, written ⊨ 𝑣 ∶ {𝜈∶𝑇 ∣ 𝜓}, if ⊨ 𝑣 ∶ 𝑇 and ∅ ⊨ 𝜓[𝑣/𝜈].

With this interpretation of refinment types, we can pro-
ceed with the (semantic) type soundness theorem with re-
spect to refinement types:

Theorem 5.4 (Refinement soundness). If Γ; 𝜙 ⊢ ̂𝑒 ∶ {𝜈∶𝑇 ∣
𝜓}, then 𝜙 𝛾 ⊨ 𝜓[E ⟦⌜ ̂𝑒⌝R⟧Tm𝛾/𝜈], where 𝛾 respects the typing
context Γ and satisfies 𝜙.

The converse of this theorem is also true. It states the
completeness of our refinement type system with respect to
the semantic interpretation.

Theorem 5.5 (Refinement completeness). If for all expres-
sion 𝑒, such that Γ ⊢ 𝑒 ∶ 𝑇 and for all semantic context 𝛾 that
respects Γ and satisfies 𝜙, 𝜙 𝛾 ⊨ 𝜓[E ⟦𝑒⟧Tm𝛾/𝜈] is true, then
there must exists ̂𝑒 and Γ; 𝜙 ⊢ ̂𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓}, such that ⌜ ̂𝑒⌝R = 𝑒.

The proofs of Theorem 5.4 and Theorem 5.5 are both easy
inductions on the typing tree. Note that for the completeness
theorem, since we only need to construct one such refine-
ment typed expression (or, equivalently, typing tree), the
proof is not unique, in light of the SUBR andWEAKR rules.
With the refinement soundness and completeness theo-

rems, we can deduce a few direct but useful corollaries:

Corollary 5.6. Refinement soundness holds for closed terms.

Proof. Instantiate Γ with ∅ in Theorem 5.4. �

Corollary 5.7. For refinement typing judgements, the predi-
cate 𝜙 on the context is an invariant, namely, Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈∶
𝑇 ∣ 𝜆𝜈. 𝜙}.

Proof. By Theorem 5.5. �

Corollary 5.8 (Consistency). It is impossible to assign a void
refinement type to an expression Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶𝑇 ∣ 𝜆𝜈. ⊥}, if
∅ ⊨ 𝜙 𝛾 for any semantic environment 𝛾 that respects Γ.

Proof. By Theorem 5.4. �

6 Typechecking 𝜆𝑅 byWeakest Precondition
A naïve typechecking algorithm can be given to the 𝜆𝑅 lan-
guage, in terms of the weakest precondition predicate trans-
former [6]. In an imperative language, when a variable 𝑥
gets assigned, the Hoare triple is {𝑄[𝑒/𝑥]} 𝑥 ∶= 𝑒 {𝑄}, which
means that the precondition can be acquired by simply sub-
stituting the variable 𝑥 in the postcondition 𝑄 by the expres-
sion to which the variable is assigned. This precondition is
in fact also the weakest precondition. In our formulation
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Γ❴𝜙❵ ⊢ 𝑒 ∶ 𝑇❴𝜆𝜈.𝜓❵, the postcondition 𝜓 is a predicate over
the result of the expression e and the context, with 𝜈 binding
the value of 𝑒. In a purely functional setting, since nothing
changes before and after the typing of 𝑒, anything true of 𝑒
must have been true in the context.Therefore if we substitute
𝑒 for 𝜈 in 𝜓, it becomes a predicate over the binders in the
typing context, of which 𝑒 is composed.

Definition 6.1. For any expression Γ ⊢ 𝑒 ∶ 𝑇 in the lan-
guage 𝜆𝐵, if the postcondition over 𝑒 is 𝜆𝜈.𝜓, then the weakest
precondition is defined as wp 𝜓 𝑒 = 𝜓[𝑒/𝜈].

The completeness and soundness of the wp function with
respect to the typing rules of 𝜆𝑅 are direct corollaries of the
refinement soundness and completeness theorems (Theo-
rem 5.4 and Theorem 5.5) respectively.

Theorem6.2 (Completeness ofwpw.r.t. 𝜆𝑅 typing). If Γ; 𝜙 ⊢𝑅
̂𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓}, then 𝜙 𝛾 ⇒ wp 𝜓 ⌜𝑒⌝R 𝛾 for any semantic envi-
ronment 𝛾 that respects Γ.

Theorem 6.3 (Soundness of wp w.r.t. 𝜆𝑅 typing). For an
expression Γ ⊢ 𝑒 ∶ 𝑇 in 𝜆𝐵 and a predicate 𝜓 there must exists a
type derivation Γ;wp 𝜓 𝑒 ⊢𝑅 ̂𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓} such that ⌜ ̂𝑒⌝R = 𝑒.

The wp function checks that, when a type signature is
given to an expression, it can infer the weakest precondition
for it to be typeable. Writing in natural deduction style, the
algorithmic typing rule looks like:

⋯

Γ; 𝜙 ⊢▶ 𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓}

Contrary to regular algorithmic typing rules (e.g. in bidi-
rectional typing [7]), where the context and the expression
are typically inputs, and the type is either input or output
depending on whether it performs type checking or synthe-
sise, in our formulation, the expression and the type are the
inputs and (the predicate part of) the context is the output.
The wp function only checks that if an expression is ty-

peable by inferring a weakest context, but it does not elab-
orate the typing tree, annotating each sub-expression with
a type, nor does it automatically construct the proof terms.
Despite the limitation, this method can still be applied to
program verification tasks in which the exact typing tree
does not need to be constructed, or when the construction of
the proof terms do not need to be automatic. For instance, we
intent to augment the Cogent language [24, 25, 28], a purely
functional language for easing the formal verification of sys-
tems code, with refinement types. In Cogent’s verification
framework, a fully elaborated typing tree is not necessary,
and the functional correctness of a system is manually spec-
ified and proved in Isabelle/HOL. Since proof engineers are
already engaged, we do not have to rely on an SMT-solver
to fully construct the proof objects.

7 Function Contracts With 𝜆𝐶

As we have seen in the last few sections, such a backwards
typechecking algorithm is very easy to define and works
uniformly on all terms. The language 𝜆𝑅, however, has a
very unfortunate drawback – it does not respect the type
signatures given to functions. For example, thewp algorithm
does not check the argument to a function has the right type,
nor does it check that a function’s definition satisfies its
type signature. After all, the type signatures are erased in
the program that wp operates on, and syntax tree is lost
as the object language expressions get reflected into the
logic as shallow Agda terms. As a concrete illustration, when
we apply wp to the 𝑒𝑥R0 program above, it only returns a
verification condition 2 < 5 for the whole program, whereas
no check on the argument or on the function 𝑓0’s definition
is being conducted.

wp-ex₀ : _

wp-ex₀ = wp ((_< 5) ∘ proj₂) ex₀ -- 2 < 5

To rectify the problem, we define a variant of the language
𝜆𝐶, which is compositional in the sense that the function
contracts are respected.5 It is worth mentioning that the
language is not yet compositional in the sense of [13], as the
weakest precondition computation still draws information
from the implementation of expressions, which we will see
later in this section.

7.1 The 𝜆𝐶 language
Thesyntax of 𝜆𝐶 is the same as 𝜆𝑅, and its typing rules are very
similar to those of 𝜆𝑅 as well. We only makes two changes
in the typing rules for 𝜆𝐶:

Γ̂ ⊢𝐶 𝑒 ∶ 𝜏

Γ; 𝜙 ⊢𝐶 ̂𝑒1 ∶ {𝑥∶𝑆 ∣ 𝜉} Γ ⊢ {𝜈∶𝑇 ∣ 𝜓} wf
Γ, 𝑥 ∶ 𝑆; 𝜙 ∧ 𝑥 = ̂𝑒1 ⊢𝐶 ̂𝑒2 ∶ {𝜈∶𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢𝐶 let 𝑥 = ̂𝑒1 in ̂𝑒2 ∶ {𝜈∶𝑇 ∣ 𝜓}
LETC

Γ; 𝜙 ⊢𝐶 ̂𝑓 ∶ 𝑥∶{𝜈∶𝑆 ∣ 𝜉}⟶{𝜈∶𝑇 ∣ 𝜓} 𝑥 ∉ Dom(Γ)
Γ; 𝜙 ⊢𝐶 ̂𝑒 ∶ {𝜈∶𝑆 ∣ 𝜉}

Γ; 𝜙 ⊢𝐶 ̂𝑓 ̂𝑒 ∶ {𝜈∶𝑇 ∣ ∃𝑥 ∶ 𝜉[𝑥/𝜈].𝜓}
APPC

As suggested by Knowles and Flanagan [13]’s work, the
result of a function application can be made existential for
retaining the abstraction over the function’s argument. This
idea is implemented as the ruleAPPC.The choice of using this
favour of function application is purely incidental – offering
a contrast to the other variant used in 𝜆𝑅. In practice, we
believe both rules have their place in a system.The existential
version is significantly limited in the conclusions that it
can lead to, and renders some basic functions useless. For
instance, we define an inc function as follows:

5The superscript 𝐶 in 𝜆𝐶 means “contract”.
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inc ∶ (𝑥∶ℕ) → {𝜈∶ℕ ∣ 𝜈 = 𝑥 + 1}

inc = 𝜆𝑥. su 𝑥

The function’s output is already giving the exact type of
the result. With the APPC rule, we cannot deduce that inc 0 is
1, which is intuitively very obvious. In fact, if the input type
of inc is kept unrefined, then we can hardly draw any con-
clusion about the result of this function. This behaviour can
be problematic when users define, say, arithmetic operations
as functions.

The LETC rule differs from LETR in a way that the precon-
dition of the expression 𝑒2 is 𝜙 in conjunction with the exact
refinement 𝑥 = ̂𝑒1 for the new binder 𝑥 instead of the arbi-
trary postcondition 𝜉 of 𝑒1. This turns out to be important in
making the typechecking algorithm deterministic – no guess
work is needed for 𝜉. The LETC will work equally well in the
𝜆𝑅 language, but the typing rules (or, program logic) for 𝜆𝐶
need to be more carefully chosen, as the implementation of
functions are abstracted away from the reasoning process.

Since the definition of the 𝜆𝐶 in the Agda formalisation is
indexed by the typing rules, when the typing rules change,
the deep syntax of the language has to be defined again.
We also define the erasure function ⌜_⌝C on 𝜆𝐶 similar to
the ⌜_⌝R function presented before. The 𝜆𝐶 is interpreted the
same way as 𝜆𝑅, by taking the Agda denotation of the erased
terms.

7.2 Annotated untyped language 𝜆𝐴

To perform refinement typechecking on 𝜆𝐶, we define a vari-
ant of a base language 𝜆𝐴, which is identical to the simply-
typed base language 𝜆𝐵, except that the functions are asso-
ciated with type annotations for its input and output types.
We denote function expressions in 𝜆𝐴 as 𝑓 ∷ (𝑥 ∶ 𝜉) → 𝜓,
instead of an untyped bare 𝑓.
In order to interpret the annotated language 𝜆𝐴, follow-

ing our tradition we define an erasure function ⌜_⌝A to the
base language 𝜆𝐵, so that the Agda denotation of 𝜆𝐴 can be
obtained by using 𝜆𝐵 as an intermediary. To establish the
connection between 𝜆𝐶 and 𝜆𝐴, another partial erasure func-
tion ⌜_⌝B is defined, to take a 𝜆𝐶 term to the corresponding
𝜆𝐴 term.6 It preserves the function’s type annotation in 𝜆𝐶,
so that we know that when a 𝜆𝐴 term is typed, the functions
are typed as prescribed. With the three erasure functions,
we prove that they form a commuting diagram:

Lemma 7.1. For all expression ̂𝑒 in 𝜆𝐶, ⌜⌜ ̂𝑒⌝B⌝A = ⌜𝑒⌝C.

Proof. By induction on ̂𝑒. �

7.3 Typechecking 𝜆𝐴

In order to typecheck 𝜆𝐴, which is a language that is already
well-typed with respect to simple types, and all functions

6The superscript 𝐵 in ⌜_⌝B is because, 𝐵 is in between 𝐴 (⌜_⌝A)and 𝐶 (⌜_⌝C).

are annotated with refinement types, we want to have a
similar deterministic procedure as we did in Section 6. Un-
fortunately, in the presence of the function boundaries, the
weakest precondition computation cannot be done simply
by substituting in the expressions.
We borrow the ideas from computing weakest precon-

ditions for imperative languages with loops. Specifically,
we follow the development found in Nipkow and Klein [20,
§12.4]’s book. In standard Hoare logic, it is widely known
that the loop-invariant for a WHILE-loop cannot be com-
puted using the weakest precondition functionwp [6], as the
function is recursive and may not terminate. In Nipkow and
Klein [20]’s work, for Isabelle/HOL to deterministically gen-
erate the verification condition for a Hoare triple, it requires
the users to provide annotations for loop-invariants. It then
divides the standard wp function into two functions: pre and
vc. The former computes the weakest precondition nearly as
wp, except that in the case of aWHILE-loop, it returns the
annotated invariant immediately. The latter then checks that
the provided invariants indeed make sense. Intuitively, for
aWHILE-loop, it checks that the invariant 𝐼 together with
the loop condition implies the precondition of the loop body,
which needs to preserve 𝐼 afterwards, and that 𝐼 together with
the negation of the loop-condition implies the postcondition.
In all other cases, the vc function simply recurses down the
sub-statements and aggregates verification conditions.
Although there is no recursion – the functional counter-

parts to loops of an imperative language – in our language,
the situation with functions is somewhat similar to WHILE-
loops. We also cannot compute the weakest precondition
according to the expressions, but have to rely on user an-
notations, for a different reason. We can also divide the wp
computation into pre and vc. pre immediately returns the
pre-condition of a function, which is the refinement predi-
cate on the argument type of the function. vc additionally
checks that the provided function signatures make sense.
In particular, we need to check that in a function applica-
tion: (1) the function’s actual argument is of a supertype to
the prescribed input type; (2) the function’s prescribed out-
put type implies the postcondition of the function inferred
from the program context. Additionally, vc needs to recurse
down the syntax tree and gather verification conditions from
sub-expressions, and, in particular, descent into function def-
initions to check that they meet the given type signatures.
The definitions of the pre and the vc functions are shown
below:7

pre : ∀{Γ}{T}(ψ : ⟦ Γ ▸ T ⟧C → Set) → (e : Γ ⊢A T)

→ (⟦ Γ ⟧C → Set)

pre ⃗ : ∀{Γ}{S T}{ξ}{ψ} → Γ ⊢A S ❴ ξ ❵⟶ T ❴ ψ ❵

→ (⟦ Γ ▸ S ⟧C → Set)

7∩ is the intersection of predicates defined in Agda’s standard library as:
𝑃 ∩𝑄 = 𝜆𝛾 → 𝑃 𝛾 ×𝑄 𝛾.
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pre ψ (SUA e) = pre (ᵏ ⊤) e ∩ ψ [ ⌜ SUA e ⌝A ]s

pre ψ (IFA c e₁ e₂)

= pre (ᵏ ⊤) c

∩ (if_then_else_ ∘ ⟦ ⌜ c ⌝A ⟧⊢) ˢ pre ψ e₁ ˢ pre ψ e₂

pre ψ (LETA e₁ e₂)

= pre (ᵏ ⊤) e₁

∩ ˄ (pre (λ ((γ , _) , t) → ψ (γ , t)) e₂) ˢ ⟦ ⌜ e₁ ⌝A ⟧⊢

pre ψ (PRDA e₁ e₂)

= pre (ᵏ ⊤) e₁ ∩ pre (ᵏ ⊤) e₂ ∩ ψ [ ⌜ PRDA e₁ e₂ ⌝A ]s

pre ψ (FSTA e) = pre (ᵏ ⊤) e ∩ ψ [ ⌜ FSTA e ⌝A ]s

pre ψ (SNDA e) = pre (ᵏ ⊤) e ∩ ψ [ ⌜ SNDA e ⌝A ]s

pre _ (APPA {ξ = ξ}{ψ = ψ} f e) = pre ξ e

pre ψ (ADDA e₁ e₂)

= pre (ᵏ ⊤) e₁ ∩ pre (ᵏ ⊤) e₂ ∩ ψ [ ⌜ ADDA e₁ e₂ ⌝A ]s

pre ψ (MINUSA e₁ e₂)

= pre (ᵏ ⊤) e₁ ∩ pre (ᵏ ⊤) e₂ ∩ ψ [ ⌜ MINUSA e₁ e₂ ⌝A ]s

pre ψ (LTA e₁ e₂)

= pre (ᵏ ⊤) e₁ ∩ pre (ᵏ ⊤) e₂ ∩ ψ [ ⌜ LTA e₁ e₂ ⌝A ]s

pre ψ e = ψ [ ⌜ e ⌝A ]s -- It's just subst for the rest

pre ⃗ {ξ = ξ}{ψ = ψ} (FUNA e) = ξ ∩ pre ψ e

vc : ∀{Γ}{T} → (⟦ Γ ⟧C → Set) → (⟦ Γ ▸ T ⟧C → Set)

→ Γ ⊢A T → Set

vc ⃗ : ∀{Γ}{S T}{ξ}{ψ} → (⟦ Γ ⟧C → Set)

→ Γ ⊢A S ❴ ξ ❵⟶ T ❴ ψ ❵ → Set

vc ϕ ψ (VARA x) = ⊤

vc ϕ ψ UNITA = ⊤

vc ϕ ψ TTA = ⊤

vc ϕ ψ FFA = ⊤

vc ϕ ψ ZEA = ⊤

vc ϕ ψ (SUA e) = vc ϕ (ᵏ ⊤) e

vc ϕ ψ (IFA c e₁ e₂)

= vc ϕ (ᵏ ⊤) c

× vc (λ γ → ϕ γ × ⟦ ⌜ c ⌝A ⟧⊢ γ ≡ true) ψ e₁

× vc (λ γ → ϕ γ × ⟦ ⌜ c ⌝A ⟧⊢ γ ≡ false) ψ e₂

vc ϕ ψ (LETA e₁ e₂)

= vc ϕ (ᵏ ⊤) e₁

× vc (λ (γ , s) → ϕ γ × s ≡ ⟦ ⌜ e₁ ⌝A ⟧⊢ γ)

(λ ((γ , _) , t) → ψ (γ , t)) e₂

vc ϕ ψ (PRDA e₁ e₂) = vc ϕ (ᵏ ⊤) e₁ × vc ϕ (ᵏ ⊤) e₂

vc ϕ ψ (FSTA e) = vc ϕ (ᵏ ⊤) e

vc ϕ ψ (SNDA e) = vc ϕ (ᵏ ⊤) e

vc {Γ} ϕ ψ′ (APPA {S = S}{T = T}{ξ = ξ}{ψ = ψ} f e)

= vc ⃗ ϕ f -- def.

× vc ϕ ξ e -- arg.

× (∀(γ : ⟦ Γ ⟧C)(s : ⟦ S ⟧τ)(t : ⟦ T ⟧τ)

→ ϕ γ → ξ (γ , s) → ψ ((γ , s) , t) → ψ′ (γ , t))

-- res.

vc ϕ ψ (ADDA e₁ e₂) = vc ϕ (ᵏ ⊤) e₁ × vc ϕ (ᵏ ⊤) e₂

vc ϕ ψ (MINUSA e₁ e₂) = vc ϕ (ᵏ ⊤) e₁ × vc ϕ (ᵏ ⊤) e₂

vc ϕ ψ (LTA e₁ e₂) = vc ϕ (ᵏ ⊤) e₁ × vc ϕ (ᵏ ⊤) e₂

vc ⃗ {Γ = Γ}{S = S}{T = T} ϕ (FUNA {ξ = ξ}{ψ = ψ} e)

= (∀(γ : ⟦ Γ ⟧C)(s : ⟦ S ⟧τ) → ϕ γ → ξ (γ , s)

→ pre ψ e (γ , s))

× vc (λ (γ , s) → ϕ γ × ξ (γ , s)) ψ e

Unlike the development in the book of Nipkow and Klein
[20], in our language 𝜆𝐴, the definition of pre deviates from
wp by quite a long way. For example, the typing rule for su
looks like:

Γ; 𝜙 ⊢𝐶∶ ̂𝑒 ∶ {𝜈∶ℕ ∣ 𝜉}

Γ; 𝜙 ⊢𝐶∶ su ̂𝑒 ∶ {𝜈∶ℕ ∣ 𝜈 = suc ̂𝑒}
SUC

Intuitively, when we run thewp backwards on su ̂𝑒with post-
condition 𝜓, it results in 𝜓[suc ̂𝑒/𝜈]. The inferred refinement
𝜉 of ̂𝑒 in the premise is arbitrary and appears to be irrelevant
to the computation of the weakest precondition of the whole
rule. Therefore we can set 𝜉 to be the trivial refinement (true)
and there is nothing to be assumed about the context to refine
̂𝑒. This is however not the case in the presence of function
contracts. In general, a trivial postcondition does not entail a
trivial precondition: pre 𝜙 (𝑘⊤) ̂𝑒 ≠ (𝑘⊤). For instance, if ̂𝑒 is
a function application, we also need to compute the weakest
precondition for the argument to satisfy the contract.
Our vc function also differs slightly from its counterpart

in the imperative setting: it additionally takes the precondi-
tion as an argument. This is because in a purely functional
language, we do not carry over all the information in the
precondition to the postcondition, as the precondition is an
invariant (recall that in the subtyping rule SUBR, the entail-
ment is 𝜙 ⊨ 𝜓 ⇒ 𝜓′).
If we repeat the earlier example of 𝑓0 and 𝑒𝑥0 in 𝜆𝐴, the

pre function this time indeed checks the type of the function
argument, and the vc generates proof obligations about the
correctness of the 𝑓0’s definition and the result of the entire
function application:

f₀A : ∀{Γ} → Γ ⊢A ‵ℕ′ ❴ (_< 2) ∘ proj₂ ❵⟶ ‵ℕ′ ❴ (_< 4) ∘ proj₂ ❵

f₀A = FUNA (ADDA (VARA top) ONEA)

ex₀A : ∀{Γ} → Γ ⊢A ‵ℕ′

ex₀A = APPA f₀A ONEA

pre-ex₀A = pre {Γ = ‵Ε′} ((_< 5) ∘ proj₂) ex₀A -- 1 < 2

vc-ex₀A = vc {Γ = ‵Ε′} (ᵏ ⊤) ((_< 5) ∘ proj₂) ex₀A

{- s < 2 → s + 1 < 4 ∧ --> func definition

s < 2 → t < 4 → t < 5 --> app result -}

7.4 Meta-properties of the typechecking algorithm
We first prove (by induction on 𝑒) monotonicity of the pre
and vc functions.

Lemma 7.2. For an annotated expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in 𝜆𝐴, if
a predicate 𝜓1 implies 𝜓2, then pre 𝜓1 𝑒 implies pre 𝜓2 𝑒.

11



1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

TyDe’22, 11 September, 2022, Ljubljana, Slovenia Zilin Chen

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Lemma7.3. For an annotated expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in 𝜆𝐴, if a
predicate 𝜙2 implies 𝜙1, and under the stronger precondition 𝜙2,
postcondition 𝜓1 implies 𝜓2, then vc 𝜙1 𝜓1 𝑒 implies vc 𝜙2 𝜓2 𝑒.

With the monotonicity lemmas, we can finally prove the
soundness and completeness of pre and vc with respect to
the typing rules of 𝜆𝐶.

Theorem 7.4 (Completeness of pre and vc w.r.t. 𝜆𝐶 typing
rules). If Γ; 𝜙 ⊢𝐶 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}, then vc 𝜙 𝜓 ⌜ ̂𝑒⌝B and 𝜙 𝛾 ⇒
pre 𝜓 ⌜ ̂𝑒⌝B 𝛾 for any semantic environment 𝛾 that respects Γ.

Proof. By induction on ̂𝑒 with the help of Lemma 7.2 and
Lemma 7.3. �

Corollary 7.5. For an expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in 𝜆𝐴, if vc 𝜙 𝜓 𝑒
and 𝜙 𝛾 ⇒ pre 𝜓 𝑒 𝛾 for any semantic environment 𝛾 that
respects Γ, then there is a type derivation Γ; 𝜙 ⊢𝐶 ̂𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓}
such that ⌜ ̂𝑒⌝B = 𝑒.

Proof. By induction on ̂𝑒. �

Theorem 7.6 (Soundness of pre and vcw.r.t. 𝜆𝐶 typing rules).
For an expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in 𝜆𝐴, if vc (pre 𝜓 𝑒) 𝜓 𝑒, then
there is a type derivation Γ;pre 𝜓 𝑒 ⊢𝐶 ̂𝑒 ∶ {𝜈∶𝑇 ∣ 𝜓} such that
⌜ ̂𝑒⌝B = 𝑒.

Proof. A direct consequence of Corollary 7.5. �

8 Related Work, Future Work and
Conclusion

The literature on refinement types is very rich (for example,
[13, 16, 29, 30, 32], just to name a few); we find the work by
Lehmann and Tanter [15] most comparable. They define the
language and the logical formulae fully deeply in Coq, and
assumes an oracle which can answer the questions about
logical entailment. In our formalisation, we interpret the
language as shallow Agda terms, and the underlying logic
is Agda’s type system. Programmers serve as the oracle to
construct proof terms. Knowles and Flanagan [12]’s work
is also closely related. It develops a decidable type recon-
struction algorithm which preserves the typeability of a pro-
gram. Their type reconstruction is highly influenced by the
strongest postcondition predicate transformation found in
Hoare logic.
Admittedly, our attempt in formalising refinement type

systems is still in its infancy. We list a few directions for
future work:

Language features. The language that we study in this
paper is very preliminary. It does not yet support higher-
order functions. How to retain the close correspondence
between the refinement type system and Hoare-triple in
light of higher-order functions is still unclear to us. In our
formalisation, the typing judgement for function terms al-
ready breaks the triplet structure, requiring a predicate for
the typing context, one for the argument type and one for

the result type. As we have alluded to in the paper, if a se-
mantic subtyping relation can be formulated, then we can
possibly allow for refinement over function types, i.e. bring
function types into the base type group. Otherwise, how to
accommodate the predicates for the argument and result
types of function objects in a Hoare-triple style formulation
deserves more investigation. General recursion is also miss-
ing from our formalisation. We surmise that recursion can
be handled analogously to how a WHILE-loop is dealt with
in Hoare logic, but fighting with Agda’s termination checker
can be a challenge. Hoare logic style reasoning turns out to
be instrumental in languages with side-effects and concur-
rency. How to extend the unifying paradigm to languages
with such features is also an open question.

Delaying proof obligations. As we have seen in the ex-
amples, constructing a typing tree for a program requires the
developer to fill in the holes with proof terms.The typecheck-
ing algorithm with pre and vc collects the proof obligations
along the typing tree. This is effectively deferring the proofs
to a later stage. It shares the same spirit of the Delay applica-
tive functor by O’Connor [23]. It is yet to be seen how it
can be applied in the construction of the typing trees in our
formalisation.

Compositionality. We said in Section 7 that the 𝜆𝐶 lan-
guage is still not fully compositional in the sense of [13]. The
interpretation function E ⟦⋅⟧Tm is used in the definition of
pre, and that effectively leaks the behaviour of the program
to the reasoning thereof, penetrating the layer of abstraction
provided by types. We dealt with it for functions, and the
implementation details of the function and the argument
are hidden from the reasoning. We would like to further
extend the compositionality in reasoning to other language
constructs in future work.

Other program logics. Lastly, in our formalisation, we
use Hoare logic as the typing rules (or program logic). There
are other flavours of program logics, most notably the dual
of Hoare logic – Reverse Hoare Logic [5] and Incorrectness
Logic [26]. We are intrigued to see if we can mount these
logics onto our system, and how it interacts with a functional
language that is, say, impure or concurrent.

In this paper, we present a simple yet novel Agda formali-
sation of refinement types on a small functional language in
the style of Hoare logic. It provides a testbed for studying
the formal connections between refinement types and Hoare
logic. We believe our work is a valuable addition to the for-
mal investigation into refinement types, and we hope this
work will foster more research into machine-checked for-
malisations of refinement type systems, and the connection
with other logical frameworks, such as Hoare logic.
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