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1 Introduction
Dependent types and computational effects are indispens-

able for safe implementation of realistic programs. The past

decade has seen several languages designed for effectful pro-

gramming with dependent types, as well as their applications

in diverse domains. For instance, Brady [4] implements an

effect library in the Idris language, using state-indexed types

to statically enforce resource access protocols. As another

example, Maillard et al. [11] formalize an effect framework

in the F
⋆
language, using monad-indexed types to enable

verification of user-defined effects.

In this abstract, we consider a dependently-typed language

that has delimited control operators shift and reset [7].

These operators are useful for programming: as shown by

Filinski [8], shift and reset can express any monadic ef-

fects, including exceptions, non-determinism, and mutable

state. They are also useful for proving: as shown by Herbelin

[9] and Ilik [10], shift and reset can prove theorems that

are not provable in intuitionistic logic, such as Markov’s

principle and Double Negation Shift.

The combination of dependent types and shift/reset
has previously been studied by Cong and Asai [5, 6]. In their

first paper [5], they define a type system where types may

depend only on pure terms, i.e., terms that do not execute

the shift operator. They also define a CPS translation of

the language, serving as an elaboration into the λ-calculus.
Thanks to the restriction on type dependency, they were

able to prove type preservation of the CPS translation along

the same lines of Bowman et al. [3], who establish a type-

preserving CPS translation for a pure dependently-typed

language. However, they assume that the target language

permits parametricity reasoning, which is undesirable be-

cause there are type theories in which parametricity does

not hold [2]. In their follow-up paper [6], Cong and Asai pro-

pose to use a selective CPS translation [12], which converts

effectful terms into CPS and keeps pure terms in direct style.

By being selective, they were able to prove type preservation

without relying on parametricity, but they do not discuss

whether the approach scales to a larger language.

To answer the question left by previous work, we extend

Cong and Asai’s [6] language with type- and effect-level

conditionals. Our key observation is that having effect-level
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K ::= ∗ | □ Kinds

A,B,α ::= C | Πx :
ϵ A. B | if e then A else B Types

ϵ ::= ι | α Effects

v ::= c | x | λx . e Values

e ::= v | e e | if e then e else e | Sk . e | ⟨e⟩ Terms

F ::= [ ] | F e | v F | if F then e else e Pure Contexts

(λx . e) v ▷ e[v/x] (β)

if true then e1 else e2 ▷ e1 (B1)

if false then e1 else e2 ▷ e2 (B2)

⟨F [Sk . e]⟩ ▷ ⟨e[λx . ⟨F [x]⟩/k]⟩ (S)

⟨v⟩ ▷ v (⟨⟩)

Figure 1. λS Syntax and Reduction

conditionals makes it challenging to type and CPS-translate

programs.

2 A Language with Shift/Reset and
Type-Level Conditionals

In this section, we consider λS , a dependently-typed lan-

guage with shift/reset and type-level conditionals. The

language allows us to define functions that return different

types of values depending on their arguments. As an exam-

ple, consider the div function below, which returns an error

message when the divisor is zero:

let div x y =
if y = 0 then "div by zero" else x / y

We can assign div the following type (where the annotation

ι means the function body is pure):

Πx :
ι int.Πy :

ι int. if y = 0 then string else int

Notice that the type of the function body is a conditional

that depends on the value y. This dependency allows us to

return a string in the error case.

2.1 Syntax and Reduction
We define the syntax and reduction of λS in Figure 1. Ex-

pressions are stratified into five categories: kinds, types, ef-

fects, values, and terms. The star kind ∗ is the kind of types,

1
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whereas the box kind □ is the kind of ∗. Base types C are

inhabited by constants c . Function types Πx :
ϵ A. B carry an

effect ϵ of the function body, which is either ι (pure) or an
answer type (return type of the continuation to be captured).

Note that function types may involve dependency on the

argument x in the codomain B; we use arrow types A
ϵ
→ B

when there is no such dependency. Term-level conditionals

may introduce corresponding type-level conditionals. The

shift construct Sk . e and reset construct ⟨e⟩ serve as a

control trigger and delimiter, respectively.

Terms in λS are evaluated under the call-by-value, left-to-

right evaluation strategy. As defined by rules (S) and (⟨⟩),

shift captures the continuation delimited by the closest

reset operator, and reset returns the value of its body as

the eventual answer within a delimited context.

2.2 Typing
Having defined the syntax and reduction, we design a type

system of λS . Following Cong and Asai [6], we maintain a

fine-grained distinction between pure and effectful terms.

This allows us to have more terms in types, and to define a

faster CPS translation.

In Figure 2, we present the typing rules of terms (we ignore

the right-hand side of{ for now). A typing judgment takes

the form Γ ⊢ e : A ! ϵ , which reads: term e has type A and

effect ϵ under environment Γ. When ϵ = ι, we call e a pure
term. When ϵ = α for some type α , we call e effectful.
Let us go through individual rules with a focus on effect

assignment. Values and reset constructs are all judged pure,
whereas shift constructs are judged effectful. Applications

and conditionals are pure if their subterms are all pure. Note

that conditionals must consist of branches having the same

effect. This restriction limits expressiveness of types but not

typability of terms: when one branch is pure and the other

is effectful, we can make the whole conditional well-typed

by casting the pure branch into an effectful one via (Exp).

Let us now shift our attention to type dependency. When

typing a dependent application (DApp), whose result type

depends on the argument e2, we require e2 to be a pure term.

Similarly, when typing a dependent conditional (DIf), whose

result type depends on test term e1, we require e1 to be a

pure term. By imposing these requirements, we obtain the

guarantee that terms appearing in types are never translated

into CPS. This eliminates the need for parametricity in the

type preservation proof.

2.3 CPS Translation
Guided by the typing rules, we define a selective CPS transla-

tion of λS . The target of the translation is a pure λ-calculus
in which one can reason about dependent conditionals using

equality information. We show the key rules in Figure 3; note

that the idea of using equalities is borrowed from existing

dependent type systems [1, 6, 13].

The translation is defined on the typing derivation, and its

output is written on the right-hand side of{ in the typing

rules (Figure 2). Pure terms are uniformly translated to a

direct-style term, whereas effectful terms are all translated

to a continuation-taking function. For applications, condi-

tionals, and control constructs, there is one CPS image for

each combination of the effects of their subterms.

The CPS translation is type-preserving, that is, it converts

a well-typed λS term into a well-typed pure λ-term.

Theorem 2.1 (Type Preservation of CPS Translation). Let
Γ′, A′, and α ′ be the CPS translation of Γ, A, and α .

1. If Γ ⊢ e : A ! ι { e ′, then Γ′ ⊢ e ′ : A′.
2. If Γ ⊢ e : A !α { e ′, then Γ′ ⊢ e ′ : (A′ → α ′) → α ′.

Proof. By induction on the derivation of e . As an example,

consider one case of the (DIf) rule, where ϵ = α . Our goal is
to show

Γ′ ⊢ λk . if e1
′ then e2

′ k else e3
′ k :

((if e1
′ then A′ else B′) → α ′) → α ′

By the induction hypothesis, we have

Γ′ ⊢ e1
′
: bool

Γ′ ⊢ e2
′
: (A′ → α ′) → α ′

Γ′ ⊢ e3
′
: (B′ → α ′) → α ′

To type the application e2
′ k , we use the equivalence e1

′ ≡

true provided by [DIf] to convert the type of k to A′ → α ′
.

We do the same for the other application e3
′ k , this time

using e1
′ ≡ false. Nowwe can conclude that the conditional

if e1
′ then e2

′ k else e3
′ k has type if e1

′ then α ′ else α ′
,

which is equivalent to α ′
. This implies the goal. □

3 Extension with Effect-Level Conditionals
We now extend λS with effect-level conditionals. This ex-

tension allows us to assign precise effects to functions. As

an example, consider the div2 function below, which aborts

the computation when the divisor is zero:

let rec div2 x y =
if y = 0 then shift k "div by zero" else x / y

We can assign div2 the following type (using equivalence

rules in Figure 4 of the appendix):

Πx :
ι int.Πy :

if y=0 then int else ι int. int

Notice that the effect of the function body is a conditional

that depends on the value y. This dependency allows us

to treat div2 as a pure function if we restrict the second

argument of div2 to a non-zero integer.

With this motivating example in mind, we extend λS with

conditional effects (Figure 6 in the appendix). We first enrich

the syntax of effects with if e then ϵ else ϵ . We next change

the typing rule of dependent conditionals so that the overall

effect is if e then ϵ2 else ϵ3, where ϵ2 and ϵ3 are the effects
of the two branches.

While the extension appears to be simple, it poses a chal-

lenge to static reasoning of programs. In particular, when

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Towards Dependently-Typed Control Effects TyDe ’22, September 11, Ljubljana, Slovenia

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

c is a constant of type C

Γ ⊢ c : C ! ι { c
(Const)

x : A ∈ Γ

Γ ⊢ x : A ! ι { x
(Var)

Γ, x : A ⊢ e : B ! ϵ { e ′

Γ ⊢ λx . e : (Πx :
ϵ A. B) ! ι { λx . e ′

(Abs)

Γ ⊢ e1 : (Πx :
ϵ3A. B) ! ϵ1 { e1

′ Γ ⊢ e2 : A ! ι { e2
′

if ϵ1 = ϵ3 = ι, then ϵ = ι; otherwise ϵ1, ϵ3 = {ι,α }, ϵ = α

Γ ⊢ e1 e2 : B[e2/x] ! ϵ {


e1

′ e2
′

if ϵ1 = ϵ3 = ι

λk . e1
′ e2

′ k if ϵ1 = ι, ϵ3 = α

λk . e1
′ (λv1.k (v1 e2

′)) if ϵ1 = α, ϵ3 = ι

λk . e1
′ (λv1.v1 e2

′ k) if ϵ1 = ϵ3 = α

(DApp)

Γ ⊢ e1 : (A
ϵ3
→ B) ! ϵ1 { e1

′ Γ ⊢ e2 : A !α { e2
′

ϵ1, ϵ3 = {ι,α }

Γ ⊢ e1 e2 : B[e2/x] !α {


λk . e2

′ (λv2.k (e1
′ v2)) if ϵ1 = ϵ3 = ι

λk . e2
′ (λv2. e1

′ v2 k) if ϵ1 = ι, ϵ3 = α

λk . e1
′ (λv1. e2

′ (λv2.k (v1 v2))) if ϵ1 = α, ϵ3 = ι

λk . e1
′ (λv1. e2

′ (λv2.v1 v2 k)) if ϵ1 = ϵ3 = α

(SApp)

Γ ⊢ e1 : bool ! ι { e1
′ Γ ⊢ e2 : A ! ϵ { e2

′ Γ ⊢ e3 : B ! ϵ { e3
′

Γ ⊢ if e1 then e2 else e3 : if e1 then A else B ! ϵ {

{
if e1

′ then e2
′ else e3

′
if ϵ = ι

λk . if e1
′ then e2

′ k else e3
′ k if ϵ = α

(DIf)

Γ ⊢ e1 : bool !α { e1
′ Γ ⊢ e2 : A ! ϵ { e2

′ Γ ⊢ e3 : A ! ϵ { e3
′

ϵ = {ι,α }

Γ ⊢ if e1 then e2 else e3 : A !α {

{
λk . e1

′ (λv1.k (if v1 then e2
′ else e3

′)) if ϵ = ι

λk . e1
′ (λv1. if v1 then e2

′ k else e3
′ k) if ϵ = α

(SIf)

Γ, k : A → B ⊢ e : B ! ϵ { e ′ ϵ = {ι,B}

Γ ⊢ Sk . e : A !B {

{
λk . e ′ (λx . x) if ϵ = ι

λk . e ′ if ϵ = B

(Shift)
Γ ⊢ e : A ! ϵ { e ′ ϵ = {ι,A}

Γ ⊢ ⟨e⟩ : A ! ι {

{
e ′ if ϵ = ι

e ′ (λx . x) if ϵ = A

(Reset)

Γ ⊢ e : A ! ϵ { e ′ A ≡ B ϵ ≡ ϵ ′

Γ ⊢ e : B ! ϵ { e ′
(Conv)

Γ ⊢ e : A ! ι { e ′ Γ ⊢ α : ∗

Γ ⊢ e : A !α { λk .k e ′
(Exp)

Figure 2. λS Typing and CPS Translation

p : e ≡ e ′ ∈ Γ

Γ ⊢ e ≡ e ′
Γ ⊢ e1 : bool Γ, p : e1 ≡ true ⊢ e2 : A Γ, p : e1 ≡ false ⊢ e3 : B

Γ ⊢ if e1 then e2 else e3 : if e1 then A else B
[DIf]

Figure 3. Target Equivalence and Typing (excerpt)

a conditional effect has an open test term (such as y = 0
in the div2 example), it is not equivalent to the pure effect,

nor is it an answer type. This prevents us from deciding

whether a term may appear in a type, and whether it should

be translated into CPS. On the other hand, at runtime, every

computation that is actually executed must have a closed

effect, which reduces to either ι or a type. We are currently

seeking a sound semantics for conditional effects, and we

hope to receive suggestions from the audience at the work-

shop.
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A Elided Rules

t is a type, effect, or term

t ≡ t

t ≡ t ′

t ′ ≡ t

t ≡ t ′ t ′ ≡ t ′′

t ≡ t ′′

A ≡ A′ B ≡ B′ ϵ ≡ ϵ ′

Πx :
ϵ A. B ≡ Πx :

ϵ ′A′. B′

if true then A else B ≡ A if false then A else B ≡ B

if e then A else A ≡ A

e ≡ e ′ A ≡ A′ B ≡ B′

if e then A else B ≡ if e ′ then A′ else B′

e ▷∗ e ′

e ≡ e ′
e ≡ e ′

λx . e ≡ λx . e ′

e1 ≡ e1
′ e2 ≡ e2

′

e1 e2 ≡ e1 ′ e2 ′
e1 ≡ e1

′ e2 ≡ e2
′ e3 ≡ e3

′

if e1 then e2 else e3 ≡ if e1 ′ then e2 ′ else e3 ′

e ≡ e ′

Sk . e ≡ Sk . e ′
e ≡ e ′

⟨e⟩ ≡ ⟨e ′⟩

Figure 4. λS Equivalence

⊢ Γ

Γ ⊢ ∗ : □ { ∗
(Star)

C is a base type

Γ ⊢ C : ∗ { C
(Base)

Γ ⊢ A : ∗ { A′

Γ, x : A ⊢ B : ∗ { B′

Γ ⊢ Πx :
ιA. B : ∗ { Πx :

ιA′. B′
(PiPure)

Γ ⊢ A : ∗ { A′

Γ, x : A ⊢ B : ∗ { B′

Γ ⊢ α : ∗ { α ′

Γ ⊢ Πx :
α A. B : ∗ { Πx :

α ′A′. B′
(PiEff)

Γ ⊢ e : bool ! ι { e ′ Γ ⊢ A : ∗ { A′ Γ ⊢ B : ∗ { B′

Γ ⊢ if e then A else B : ∗ { if e ′ then A′ else B′
(If)

Figure 5. λS Kinding and CPS Translation of Types

ϵ ::= ... | if e then ϵ1 else ϵ2 Effects

Γ ⊢ e1 : bool ! ι Γ ⊢ e2 : A2 ! ϵ2 Γ ⊢ e3 : A3 ! ϵ3
Γ ⊢ if e1 then e2 else e3 : if e1 then A2 else A3 ! if e1 then ϵ2 else ϵ3

(DIf)

Figure 6. Syntax and Typing of Effect-Level If
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