
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Towards Dependently-Typed Control Effects
Extended Abstract

Youyou Cong

Tokyo Institute of Technology

Tokyo, Japan

cong@c.titech.ac.jp

Kenichi Asai

Ochanomizu University

Tokyo, Japan

asai@is.ocha.ac.jp

1 Introduction
Dependent types and computational effects are indispens-

able for safe implementation of realistic programs. The past

decade has seen several languages designed for effectful pro-

gramming with dependent types, as well as their applications

in diverse domains. For instance, Brady [4] implements an

effect library in the Idris language, using state-indexed types

to statically enforce resource access protocols. As another

example, Maillard et al. [11] formalize an effect framework

in the F
⋆
language, using monad-indexed types to enable

verification of user-defined effects.

In this abstract, we consider a dependently-typed language

that has delimited control operators shift and reset [7].

These operators are useful for programming: as shown by

Filinski [8], shift and reset can express any monadic ef-

fects, including exceptions, non-determinism, and mutable

state. They are also useful for proving: as shown by Herbelin

[9] and Ilik [10], shift and reset can prove theorems that

are not provable in intuitionistic logic, such as Markov’s

principle and Double Negation Shift.

The combination of dependent types and shift/reset
has previously been studied by Cong and Asai [5, 6]. In their

first paper [5], they define a type system where types may

depend only on pure terms, i.e., terms that do not execute

the shift operator. They also define a CPS translation of

the language, serving as an elaboration into the λ-calculus.
Thanks to the restriction on type dependency, they were

able to prove type preservation of the CPS translation along

the same lines of Bowman et al. [3], who establish a type-

preserving CPS translation for a pure dependently-typed

language. However, they assume that the target language

permits parametricity reasoning, which is undesirable be-

cause there are type theories in which parametricity does

not hold [2]. In their follow-up paper [6], Cong and Asai pro-

pose to use a selective CPS translation [12], which converts

effectful terms into CPS and keeps pure terms in direct style.

By being selective, they were able to prove type preservation

without relying on parametricity, but they do not discuss

whether the approach scales to a larger language.

To answer the question left by previous work, we extend

Cong and Asai’s [6] language with type- and effect-level

conditionals. Our key observation is that having effect-level

TyDe ’22, September 11, Ljubljana, Slovenia
2022.

K ::= ∗ | □ Kinds

A,B,α ::= C | Πx :
ϵ A. B | if e then A else B Types

ϵ ::= ι | α Effects

v ::= c | x | λx . e Values

e ::= v | e e | if e then e else e | Sk . e | ⟨e⟩ Terms

F ::= [] | F e | v F | if F then e else e Pure Contexts

(λx . e) v ▷ e[v/x] (β)

if true then e1 else e2 ▷ e1 (B1)

if false then e1 else e2 ▷ e2 (B2)

⟨F [Sk . e]⟩ ▷ ⟨e[λx . ⟨F [x]⟩/k]⟩ (S)

⟨v⟩ ▷ v (⟨⟩)

Figure 1. λS Syntax and Reduction

conditionals makes it challenging to type and CPS-translate

programs.

2 A Language with Shift/Reset and
Type-Level Conditionals

In this section, we consider λS , a dependently-typed lan-

guage with shift/reset and type-level conditionals. The

language allows us to define functions that return different

types of values depending on their arguments. As an exam-

ple, consider the div function below, which returns an error

message when the divisor is zero:

let div x y =
if y = 0 then "div by zero" else x / y

We can assign div the following type (where the annotation

ι means the function body is pure):

Πx :
ι int.Πy :

ι int. if y = 0 then string else int

Notice that the type of the function body is a conditional

that depends on the value y. This dependency allows us to

return a string in the error case.

2.1 Syntax and Reduction
We define the syntax and reduction of λS in Figure 1. Ex-

pressions are stratified into five categories: kinds, types, ef-

fects, values, and terms. The star kind ∗ is the kind of types,

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

TyDe ’22, September 11, Ljubljana, Slovenia Youyou Cong and Kenichi Asai

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

whereas the box kind □ is the kind of ∗. Base types C are

inhabited by constants c . Function types Πx :
ϵ A. B carry an

effect ϵ of the function body, which is either ι (pure) or an
answer type (return type of the continuation to be captured).

Note that function types may involve dependency on the

argument x in the codomain B; we use arrow types A
ϵ
→ B

when there is no such dependency. Term-level conditionals

may introduce corresponding type-level conditionals. The

shift construct Sk . e and reset construct ⟨e⟩ serve as a

control trigger and delimiter, respectively.

Terms in λS are evaluated under the call-by-value, left-to-

right evaluation strategy. As defined by rules (S) and (⟨⟩),

shift captures the continuation delimited by the closest

reset operator, and reset returns the value of its body as

the eventual answer within a delimited context.

2.2 Typing
Having defined the syntax and reduction, we design a type

system of λS . Following Cong and Asai [6], we maintain a

fine-grained distinction between pure and effectful terms.

This allows us to have more terms in types, and to define a

faster CPS translation.

In Figure 2, we present the typing rules of terms (we ignore

the right-hand side of{ for now). A typing judgment takes

the form Γ ⊢ e : A ! ϵ , which reads: term e has type A and

effect ϵ under environment Γ. When ϵ = ι, we call e a pure
term. When ϵ = α for some type α , we call e effectful.
Let us go through individual rules with a focus on effect

assignment. Values and reset constructs are all judged pure,
whereas shift constructs are judged effectful. Applications

and conditionals are pure if their subterms are all pure. Note

that conditionals must consist of branches having the same

effect. This restriction limits expressiveness of types but not

typability of terms: when one branch is pure and the other

is effectful, we can make the whole conditional well-typed

by casting the pure branch into an effectful one via (Exp).

Let us now shift our attention to type dependency. When

typing a dependent application (DApp), whose result type

depends on the argument e2, we require e2 to be a pure term.

Similarly, when typing a dependent conditional (DIf), whose

result type depends on test term e1, we require e1 to be a

pure term. By imposing these requirements, we obtain the

guarantee that terms appearing in types are never translated

into CPS. This eliminates the need for parametricity in the

type preservation proof.

2.3 CPS Translation
Guided by the typing rules, we define a selective CPS transla-

tion of λS . The target of the translation is a pure λ-calculus
in which one can reason about dependent conditionals using

equality information. We show the key rules in Figure 3; note

that the idea of using equalities is borrowed from existing

dependent type systems [1, 6, 13].

The translation is defined on the typing derivation, and its

output is written on the right-hand side of{ in the typing

rules (Figure 2). Pure terms are uniformly translated to a

direct-style term, whereas effectful terms are all translated

to a continuation-taking function. For applications, condi-

tionals, and control constructs, there is one CPS image for

each combination of the effects of their subterms.

The CPS translation is type-preserving, that is, it converts

a well-typed λS term into a well-typed pure λ-term.

Theorem 2.1 (Type Preservation of CPS Translation). Let
Γ′, A′, and α ′ be the CPS translation of Γ, A, and α .

1. If Γ ⊢ e : A ! ι { e ′, then Γ′ ⊢ e ′ : A′.
2. If Γ ⊢ e : A !α { e ′, then Γ′ ⊢ e ′ : (A′ → α ′) → α ′.

Proof. By induction on the derivation of e . As an example,

consider one case of the (DIf) rule, where ϵ = α . Our goal is
to show

Γ′ ⊢ λk . if e1
′ then e2

′ k else e3
′ k :

((if e1
′ then A′ else B′) → α ′) → α ′

By the induction hypothesis, we have

Γ′ ⊢ e1
′
: bool

Γ′ ⊢ e2
′
: (A′ → α ′) → α ′

Γ′ ⊢ e3
′
: (B′ → α ′) → α ′

To type the application e2
′ k , we use the equivalence e1

′ ≡

true provided by [DIf] to convert the type of k to A′ → α ′
.

We do the same for the other application e3
′ k , this time

using e1
′ ≡ false. Nowwe can conclude that the conditional

if e1
′ then e2

′ k else e3
′ k has type if e1

′ then α ′ else α ′
,

which is equivalent to α ′
. This implies the goal. □

3 Extension with Effect-Level Conditionals
We now extend λS with effect-level conditionals. This ex-

tension allows us to assign precise effects to functions. As

an example, consider the div2 function below, which aborts

the computation when the divisor is zero:

let rec div2 x y =
if y = 0 then shift k "div by zero" else x / y

We can assign div2 the following type (using equivalence

rules in Figure 4 of the appendix):

Πx :
ι int.Πy :

if y=0 then int else ι int. int

Notice that the effect of the function body is a conditional

that depends on the value y. This dependency allows us

to treat div2 as a pure function if we restrict the second

argument of div2 to a non-zero integer.

With this motivating example in mind, we extend λS with

conditional effects (Figure 6 in the appendix). We first enrich

the syntax of effects with if e then ϵ else ϵ . We next change

the typing rule of dependent conditionals so that the overall

effect is if e then ϵ2 else ϵ3, where ϵ2 and ϵ3 are the effects
of the two branches.

While the extension appears to be simple, it poses a chal-

lenge to static reasoning of programs. In particular, when

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Towards Dependently-Typed Control Effects TyDe ’22, September 11, Ljubljana, Slovenia

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

c is a constant of type C

Γ ⊢ c : C ! ι { c
(Const)

x : A ∈ Γ

Γ ⊢ x : A ! ι { x
(Var)

Γ, x : A ⊢ e : B ! ϵ { e ′

Γ ⊢ λx . e : (Πx :
ϵ A. B) ! ι { λx . e ′

(Abs)

Γ ⊢ e1 : (Πx :
ϵ3A. B) ! ϵ1 { e1

′ Γ ⊢ e2 : A ! ι { e2
′

if ϵ1 = ϵ3 = ι, then ϵ = ι; otherwise ϵ1, ϵ3 = {ι,α }, ϵ = α

Γ ⊢ e1 e2 : B[e2/x] ! ϵ {


e1

′ e2
′

if ϵ1 = ϵ3 = ι

λk . e1
′ e2

′ k if ϵ1 = ι, ϵ3 = α

λk . e1
′ (λv1.k (v1 e2

′)) if ϵ1 = α, ϵ3 = ι

λk . e1
′ (λv1.v1 e2

′ k) if ϵ1 = ϵ3 = α

(DApp)

Γ ⊢ e1 : (A
ϵ3
→ B) ! ϵ1 { e1

′ Γ ⊢ e2 : A !α { e2
′

ϵ1, ϵ3 = {ι,α }

Γ ⊢ e1 e2 : B[e2/x] !α {


λk . e2

′ (λv2.k (e1
′ v2)) if ϵ1 = ϵ3 = ι

λk . e2
′ (λv2. e1

′ v2 k) if ϵ1 = ι, ϵ3 = α

λk . e1
′ (λv1. e2

′ (λv2.k (v1 v2))) if ϵ1 = α, ϵ3 = ι

λk . e1
′ (λv1. e2

′ (λv2.v1 v2 k)) if ϵ1 = ϵ3 = α

(SApp)

Γ ⊢ e1 : bool ! ι { e1
′ Γ ⊢ e2 : A ! ϵ { e2

′ Γ ⊢ e3 : B ! ϵ { e3
′

Γ ⊢ if e1 then e2 else e3 : if e1 then A else B ! ϵ {

{
if e1

′ then e2
′ else e3

′
if ϵ = ι

λk . if e1
′ then e2

′ k else e3
′ k if ϵ = α

(DIf)

Γ ⊢ e1 : bool !α { e1
′ Γ ⊢ e2 : A ! ϵ { e2

′ Γ ⊢ e3 : A ! ϵ { e3
′

ϵ = {ι,α }

Γ ⊢ if e1 then e2 else e3 : A !α {

{
λk . e1

′ (λv1.k (if v1 then e2
′ else e3

′)) if ϵ = ι

λk . e1
′ (λv1. if v1 then e2

′ k else e3
′ k) if ϵ = α

(SIf)

Γ, k : A → B ⊢ e : B ! ϵ { e ′ ϵ = {ι,B}

Γ ⊢ Sk . e : A !B {

{
λk . e ′ (λx . x) if ϵ = ι

λk . e ′ if ϵ = B

(Shift)
Γ ⊢ e : A ! ϵ { e ′ ϵ = {ι,A}

Γ ⊢ ⟨e⟩ : A ! ι {

{
e ′ if ϵ = ι

e ′ (λx . x) if ϵ = A

(Reset)

Γ ⊢ e : A ! ϵ { e ′ A ≡ B ϵ ≡ ϵ ′

Γ ⊢ e : B ! ϵ { e ′
(Conv)

Γ ⊢ e : A ! ι { e ′ Γ ⊢ α : ∗

Γ ⊢ e : A !α { λk .k e ′
(Exp)

Figure 2. λS Typing and CPS Translation

p : e ≡ e ′ ∈ Γ

Γ ⊢ e ≡ e ′
Γ ⊢ e1 : bool Γ, p : e1 ≡ true ⊢ e2 : A Γ, p : e1 ≡ false ⊢ e3 : B

Γ ⊢ if e1 then e2 else e3 : if e1 then A else B
[DIf]

Figure 3. Target Equivalence and Typing (excerpt)

a conditional effect has an open test term (such as y = 0
in the div2 example), it is not equivalent to the pure effect,

nor is it an answer type. This prevents us from deciding

whether a term may appear in a type, and whether it should

be translated into CPS. On the other hand, at runtime, every

computation that is actually executed must have a closed

effect, which reduces to either ι or a type. We are currently

seeking a sound semantics for conditional effects, and we

hope to receive suggestions from the audience at the work-

shop.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

TyDe ’22, September 11, Ljubljana, Slovenia Youyou Cong and Kenichi Asai

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

References
[1] Bruno Barras, Pierre Corbineau, Benjamin Grégoire, Hugo Herbelin,

and Jorge Luis Sacchini. 2008. A new elimination rule for the calculus

of inductive constructions. In International Workshop on Types for
Proofs and Programs (TYPES ’08). Springer, 32–48.

[2] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The

next 700 Syntactical Models of Type Theory. In Proceedings of the
6th ACM SIGPLAN Conference on Certified Programs and Proofs (Paris,
France) (CPP 2017). Association for Computing Machinery, New York,

NY, USA, 182–194. https://doi.org/10.1145/3018610.3018620
[3] William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017.

Type-preserving CPS Translation of Σ and Π Types is Not Not Possible.

Proc. ACM Program. Lang. 2, POPL, Article 22 (Dec. 2017), 33 pages.
https://doi.org/10.1145/3158110

[4] Edwin Brady. 2013. Programming and Reasoning with Algebraic

Effects and Dependent Types. In Proceedings of the 18th ACM SIG-
PLAN International Conference on Functional Programming (Boston,

Massachusetts, USA) (ICFP ’13). ACM, New York, NY, USA, 133–144.

https://doi.org/10.1145/2500365.2500581
[5] Youyou Cong and Kenichi Asai. 2018. Handling Delimited Contin-

uations with Dependent Types. Proc. ACM Program. Lang. 2, ICFP,
Article 69 (July 2018), 31 pages. https://doi.org/10.1145/3236764

[6] Youyou Cong and Kenichi Asai. 2018. Shifting and Resetting in the

Calculus of Constructions. The 19th International Symposium on

Trends in Functional Programming (TFP 2018).

[7] Olivier Danvy and Andrzej Filinski. 1990. Abstracting control. In

Proceedings of the 1990 ACM conference on LISP and functional pro-
gramming. ACM, 151–160.

[8] Andrzej Filinski. 1994. Representing Monads. In Proceedings of the
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Portland, Oregon, USA) (POPL ’94). ACM, New York, NY,

USA, 446–457. https://doi.org/10.1145/174675.178047
[9] Hugo Herbelin. 2010. An intuitionistic logic that proves Markov’s

principle. In 25th Annual IEEE Symposium on Logic in Computer Science
(LICS ’10). IEEE, 50–56.

[10] Danko Ilik. 2012. Delimited control operators prove double-negation

shift. Annals of Pure and Applied logic 163, 11 (2012), 1549–1559.
[11] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin

Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra Monads for

All. Proc. ACM Program. Lang. 3, ICFP, Article 104 (jul 2019), 29 pages.
https://doi.org/10.1145/3341708

[12] Lasse R Nielsen. 2001. A selective CPS transformation. Electronic Notes
in Theoretical Computer Science 45 (2001), 311–331.

[13] Matthieu Sozeau. 2008. Un environnement pour la programmation
avec types dépendants. Ph. D. Dissertation. University of Paris-Sud.

https://tel.archives-ouvertes.fr/tel-00640052

4

https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3158110
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1145/3236764
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/3341708
https://tel.archives-ouvertes.fr/tel-00640052

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Towards Dependently-Typed Control Effects TyDe ’22, September 11, Ljubljana, Slovenia

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

A Elided Rules

t is a type, effect, or term

t ≡ t

t ≡ t ′

t ′ ≡ t

t ≡ t ′ t ′ ≡ t ′′

t ≡ t ′′

A ≡ A′ B ≡ B′ ϵ ≡ ϵ ′

Πx :
ϵ A. B ≡ Πx :

ϵ ′A′. B′

if true then A else B ≡ A if false then A else B ≡ B

if e then A else A ≡ A

e ≡ e ′ A ≡ A′ B ≡ B′

if e then A else B ≡ if e ′ then A′ else B′

e ▷∗ e ′

e ≡ e ′
e ≡ e ′

λx . e ≡ λx . e ′

e1 ≡ e1
′ e2 ≡ e2

′

e1 e2 ≡ e1 ′ e2 ′
e1 ≡ e1

′ e2 ≡ e2
′ e3 ≡ e3

′

if e1 then e2 else e3 ≡ if e1 ′ then e2 ′ else e3 ′

e ≡ e ′

Sk . e ≡ Sk . e ′
e ≡ e ′

⟨e⟩ ≡ ⟨e ′⟩

Figure 4. λS Equivalence

⊢ Γ

Γ ⊢ ∗ : □ { ∗
(Star)

C is a base type

Γ ⊢ C : ∗ { C
(Base)

Γ ⊢ A : ∗ { A′

Γ, x : A ⊢ B : ∗ { B′

Γ ⊢ Πx :
ιA. B : ∗ { Πx :

ιA′. B′
(PiPure)

Γ ⊢ A : ∗ { A′

Γ, x : A ⊢ B : ∗ { B′

Γ ⊢ α : ∗ { α ′

Γ ⊢ Πx :
α A. B : ∗ { Πx :

α ′A′. B′
(PiEff)

Γ ⊢ e : bool ! ι { e ′ Γ ⊢ A : ∗ { A′ Γ ⊢ B : ∗ { B′

Γ ⊢ if e then A else B : ∗ { if e ′ then A′ else B′
(If)

Figure 5. λS Kinding and CPS Translation of Types

ϵ ::= ... | if e then ϵ1 else ϵ2 Effects

Γ ⊢ e1 : bool ! ι Γ ⊢ e2 : A2 ! ϵ2 Γ ⊢ e3 : A3 ! ϵ3
Γ ⊢ if e1 then e2 else e3 : if e1 then A2 else A3 ! if e1 then ϵ2 else ϵ3

(DIf)

Figure 6. Syntax and Typing of Effect-Level If

5

	1 Introduction
	2 A Language with Shift/Reset and Type-Level Conditionals
	2.1 Syntax and Reduction
	2.2 Typing
	2.3 CPS Translation

	3 Extension with Effect-Level Conditionals
	References
	A Elided Rules

