Towards Dependently-Typed Control Effects

Extended Abstract

Youyou Cong Tokyo Institute of Technology Tokyo, Japan cong@c.titech.ac.jp

1 Introduction

Dependent types and computational effects are indispensable for safe implementation of realistic programs. The past decade has seen several languages designed for effectful programming with dependent types, as well as their applications in diverse domains. For instance, Brady [4] implements an effect library in the Idris language, using state-indexed types to statically enforce resource access protocols. As another example, Maillard et al. [11] formalize an effect framework in the F* language, using monad-indexed types to enable verification of user-defined effects.

In this abstract, we consider a dependently-typed language that has delimited control operators shift and reset [7]. These operators are useful for programming: as shown by Filinski [8], shift and reset can express any monadic ef-fects, including exceptions, non-determinism, and mutable state. They are also useful for proving: as shown by Herbelin [9] and Ilik [10], shift and reset can prove theorems that are not provable in intuitionistic logic, such as Markov's principle and Double Negation Shift.

The combination of dependent types and shift/reset has previously been studied by Cong and Asai [5, 6]. In their first paper [5], they define a type system where types may depend only on pure terms, i.e., terms that do not execute the shift operator. They also define a CPS translation of the language, serving as an elaboration into the λ -calculus. Thanks to the restriction on type dependency, they were able to prove type preservation of the CPS translation along the same lines of Bowman et al. [3], who establish a type-preserving CPS translation for a pure dependently-typed language. However, they assume that the target language permits parametricity reasoning, which is undesirable be-cause there are type theories in which parametricity does not hold [2]. In their follow-up paper [6], Cong and Asai pro-pose to use a selective CPS translation [12], which converts effectful terms into CPS and keeps pure terms in direct style. By being selective, they were able to prove type preservation without relying on parametricity, but they do not discuss whether the approach scales to a larger language.

To answer the question left by previous work, we extend
 Cong and Asai's [6] language with type- and effect-level
 conditionals. Our key observation is that having effect-level

2022.

Kenichi Asai
Ochanomizu University
Tokyo, Japan
asai@is.ocha.ac.jp

$K ::= * \mid \Box$	Kinds
$A, B, \alpha ::= C \mid \Pi x :^{\epsilon} A. B \mid \text{if } e \text{ then } A \text{ else } B$	Types
$\epsilon ::= \iota \mid \alpha$	Effects
$\upsilon ::= c \mid x \mid \lambda x. e$	Values
$e ::= v \mid e \mid e \mid if \mid e \text{ then } e \mid se \mid e \mid Sk. \mid \langle e \rangle$	Terms

F ::= [] | F e | v F | if F then e else e Pure Contexts

 $(\lambda x. e) v \triangleright e[v/x] \tag{(\beta)}$

if true then e_1 else $e_2 \triangleright e_1$	(\mathbb{B}_1)
if false then e_1 else $e_2 \triangleright e_2$	(\mathbb{B}_2)
$\langle F[Sk.e] \rangle \triangleright \langle e[\lambda x. \langle F[x] \rangle / k] \rangle$	(\mathcal{S})
	(Λ)

$$\langle v \rangle \triangleright v$$
 (($\langle \rangle$)

Figure 1.
$$\lambda_S$$
 Syntax and Reduction

conditionals makes it challenging to type and CPS-translate programs.

2 A Language with Shift/Reset and Type-Level Conditionals

In this section, we consider λ_S , a dependently-typed language with shift/reset and type-level conditionals. The language allows us to define functions that return different types of values depending on their arguments. As an example, consider the div function below, which returns an error message when the divisor is zero:

let div x y =

if y = 0 then "div by zero" else x / y

We can assign div the following type (where the annotation ι means the function body is pure):

 $\Pi x:^{\iota}$ int. $\Pi y:^{\iota}$ int. if y = 0 then string else int

Notice that the type of the function body is a conditional that depends on the value *y*. This dependency allows us to return a string in the error case.

2.1 Syntax and Reduction

We define the syntax and reduction of λ_S in Figure 1. Expressions are stratified into five categories: kinds, types, effects, values, and terms. The star kind * is the kind of types,

⁵³ TyDe '22, September 11, Ljubljana, Slovenia

whereas the box kind \square is the kind of *. Base types C are 111 inhabited by constants *c*. Function types $\Pi x :^{\epsilon} A. B$ carry an 112 113 effect ϵ of the function body, which is either ι (pure) or an answer type (return type of the continuation to be captured). 114 Note that function types may involve dependency on the 115 argument *x* in the codomain *B*; we use arrow types $A \xrightarrow{\epsilon} B$ 116 117 when there is no such dependency. Term-level conditionals 118 may introduce corresponding type-level conditionals. The 119 shift construct Sk.e and reset construct $\langle e \rangle$ serve as a 120 control trigger and delimiter, respectively.

Terms in λ_{S} are evaluated under the call-by-value, left-toright evaluation strategy. As defined by rules (S) and ($\langle \rangle$), shift captures the continuation delimited by the closest reset operator, and reset returns the value of its body as the eventual answer within a delimited context.

2.2 Typing

127

128

129

130

131

132

133

134

135

136

137

157

158

Having defined the syntax and reduction, we design a type system of λ_S . Following Cong and Asai [6], we maintain a fine-grained distinction between pure and effectful terms. This allows us to have more terms in types, and to define a faster CPS translation.

In Figure 2, we present the typing rules of terms (we ignore the right-hand side of \rightsquigarrow for now). A typing judgment takes the form $\Gamma \vdash e : A ! \epsilon$, which reads: term *e* has type *A* and effect ϵ under environment Γ . When $\epsilon = \iota$, we call *e* a pure term. When $\epsilon = \alpha$ for some type α , we call *e* effectful.

138 Let us go through individual rules with a focus on effect 139 assignment. Values and reset constructs are all judged pure, 140 whereas shift constructs are judged effectful. Applications 141 and conditionals are pure if their subterms are all pure. Note 142 that conditionals must consist of branches having the same 143 effect. This restriction limits expressiveness of types but not 144 typability of terms: when one branch is pure and the other 145 is effectful, we can make the whole conditional well-typed 146 by casting the pure branch into an effectful one via (Exp). 147

Let us now shift our attention to type dependency. When 148 typing a dependent application (DAPP), whose result type 149 depends on the argument e_2 , we require e_2 to be a pure term. 150 Similarly, when typing a dependent conditional (DIF), whose 151 result type depends on test term e_1 , we require e_1 to be a 152 pure term. By imposing these requirements, we obtain the 153 guarantee that terms appearing in types are never translated 154 into CPS. This eliminates the need for parametricity in the 155 type preservation proof. 156

2.3 CPS Translation

Guided by the typing rules, we define a selective CPS translation of λ_S . The target of the translation is a pure λ -calculus in which one can reason about dependent conditionals using equality information. We show the key rules in Figure 3; note that the idea of using equalities is borrowed from existing dependent type systems [1, 6, 13]. 166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

The translation is defined on the typing derivation, and its output is written on the right-hand side of \rightsquigarrow in the typing rules (Figure 2). Pure terms are uniformly translated to a direct-style term, whereas effectful terms are all translated to a continuation-taking function. For applications, conditionals, and control constructs, there is one CPS image for each combination of the effects of their subterms.

The CPS translation is type-preserving, that is, it converts a well-typed λ_S term into a well-typed pure λ -term.

Theorem 2.1 (Type Preservation of CPS Translation). Let Γ' , A', and α' be the CPS translation of Γ , A, and α .

1. If
$$\Gamma \vdash e : A! \iota \rightsquigarrow e'$$
, then $\Gamma' \vdash e' : A'$.

2. If $\Gamma \vdash e : A! \alpha \rightsquigarrow e'$, then $\Gamma' \vdash e' : (A' \rightarrow \alpha') \rightarrow \alpha'$.

Proof. By induction on the derivation of *e*. As an example, consider one case of the (DIF) rule, where $\epsilon = \alpha$. Our goal is to show

$\Gamma' \vdash \lambda k. \text{ if } e_1' \text{ then } e_2' k \text{ else } e_3' k:$	
$((if e_1' then A' else B') \rightarrow \alpha') \rightarrow \alpha'$	
By the induction hypothesis, we have	

$$\Gamma' \vdash e_1' : \text{bool}$$

$$\Gamma' \vdash e_2' : (A' \to \alpha') \to \alpha'$$

$$\Gamma' \vdash e_3' : (B' \to \alpha') \to \alpha'$$

To type the application $e_2' k$, we use the equivalence $e_1' \equiv$ true provided by [DIF] to convert the type of k to $A' \rightarrow \alpha'$. We do the same for the other application $e_3' k$, this time using $e_1' \equiv$ false. Now we can conclude that the conditional if e_1' then $e_2' k$ else $e_3' k$ has type if e_1' then α' else α' , which is equivalent to α' . This implies the goal. \Box

3 Extension with Effect-Level Conditionals

We now extend λ_S with effect-level conditionals. This extension allows us to assign precise effects to functions. As an example, consider the div2 function below, which aborts the computation when the divisor is zero:

let rec div2 x y =

if y = 0 then shift k "div by zero" else x / y We can assign div2 the following type (using equivalence rules in Figure 4 of the appendix):

$$\Pi x:' \text{ int. } \Pi y:^{\text{if } y=0 \text{ then int else } \iota} \text{ int. int}$$

Notice that the effect of the function body is a conditional that depends on the value y. This dependency allows us to treat div2 as a pure function if we restrict the second argument of div2 to a non-zero integer.

With this motivating example in mind, we extend λ_S with conditional effects (Figure 6 in the appendix). We first enrich the syntax of effects with if *e* then ϵ else ϵ . We next change the typing rule of dependent conditionals so that the overall effect is if *e* then ϵ_2 else ϵ_3 , where ϵ_2 and ϵ_3 are the effects of the two branches.

While the extension appears to be simple, it poses a challenge to static reasoning of programs. In particular, when Towards Dependently-Typed Control Effects

330

$$\frac{c \text{ is a constant of type C}}{\Gamma + c ; C! t \rightarrow c} (Cossy) = \frac{x : A \in \Gamma}{\Gamma + x : A! t \rightarrow x} (VAR) = \frac{\Gamma, x : A + c : B! t \rightarrow e'}{\Gamma + \lambda x : c : (\Pi x \notin A.B)! t \rightarrow \lambda x : e'} (Ans)$$

$$\frac{\Gamma + c_i : (\Pi x \cap A.B)! c_i \rightarrow c_i' \quad \Gamma + c_i : A! t \rightarrow e'_i}{\Gamma + c_i = t \text{ if } c_i = c_i = t \text{ otherwise } c_i, e_i = t \text{ (IDAPP)}} = (DAPP)$$

$$\frac{\Gamma + c_i : (\Pi x \cap A.B)! c_i \rightarrow c_i' \quad \Gamma + c_i : A! t \rightarrow e'_i}{\lambda k : e'(x), v_i \in k' k} \quad \text{ if } c_i = c_i = t \text{ (IDAPP)} = (DAPP)$$

$$\frac{\Gamma + c_i : A \cap B! (e_i / x)! (e_i / x)! (e_i / x)! (e_i - e_i = t)}{\lambda k : e'(\lambda v_i, v_i \in k' k)} \quad \text{ if } c_i = c_i = t \text{ (IDAPP)} = (A \cap A) = c_i = t \text{ (IDAPP)} = (A \cap A) = c_i = t \text{ (IDAPP)} = (A \cap A) = c_i = t \text{ (IDAPP)} = (A \cap A) = c_i + t \text{ (IDAPP)} = (A \cap A) = (A \cap A) = (A \cap A) = (A \cap A) = (A$$

3

275

References

- [1] Bruno Barras, Pierre Corbineau, Benjamin Grégoire, Hugo Herbelin, and Jorge Luis Sacchini. 2008. A new elimination rule for the calculus of inductive constructions. In International Workshop on Types for Proofs and Programs (TYPES '08). Springer, 32-48.
- Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 Syntactical Models of Type Theory. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (Paris, France) (CPP 2017). Association for Computing Machinery, New York, NY, USA, 182-194. https://doi.org/10.1145/3018610.3018620
- [3] William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-preserving CPS Translation of Σ and Π Types is Not Not Possible. Proc. ACM Program. Lang. 2, POPL, Article 22 (Dec. 2017), 33 pages. https://doi.org/10.1145/3158110
- [4] Edwin Brady. 2013. Programming and Reasoning with Algebraic Effects and Dependent Types. In Proceedings of the 18th ACM SIG-PLAN International Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP '13). ACM, New York, NY, USA, 133-144. https://doi.org/10.1145/2500365.2500581
- [5] Youyou Cong and Kenichi Asai. 2018. Handling Delimited Continuations with Dependent Types. Proc. ACM Program. Lang. 2, ICFP, Article 69 (July 2018), 31 pages. https://doi.org/10.1145/3236764
- [6] Youyou Cong and Kenichi Asai. 2018. Shifting and Resetting in the Calculus of Constructions. The 19th International Symposium on Trends in Functional Programming (TFP 2018).
- [7] Olivier Danvy and Andrzej Filinski. 1990. Abstracting control. In Proceedings of the 1990 ACM conference on LISP and functional pro-gramming. ACM, 151-160.
- Andrzej Filinski. 1994. Representing Monads. In Proceedings of the [8] 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL '94). ACM, New York, NY, USA, 446-457. https://doi.org/10.1145/174675.178047
- [9] Hugo Herbelin. 2010. An intuitionistic logic that proves Markov's principle. In 25th Annual IEEE Symposium on Logic in Computer Science (LICS '10). IEEE, 50-56.
- [10] Danko Ilik. 2012. Delimited control operators prove double-negation shift. Annals of Pure and Applied logic 163, 11 (2012), 1549-1559.
- [11] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra Monads for All. Proc. ACM Program. Lang. 3, ICFP, Article 104 (jul 2019), 29 pages. https://doi.org/10.1145/3341708
- [12] Lasse R Nielsen. 2001. A selective CPS transformation. Electronic Notes in Theoretical Computer Science 45 (2001), 311-331.
- [13] Matthieu Sozeau. 2008. Un environnement pour la programmation avec types dépendants. Ph. D. Dissertation. University of Paris-Sud. https://tel.archives-ouvertes.fr/tel-00640052

Youyou Cong and Kenichi Asai

496

A Elided Rules 441

442		497
443	t is a type offect or term $t = t'$ $t = t' + t' = t''$	498
444	$\frac{t \text{ is a type, effect, or term}}{t \equiv t} \qquad \frac{t \equiv t'}{t' \equiv t} \qquad \frac{t \equiv t' t' \equiv t''}{t \equiv t''}$	499
445	$t \equiv t$ $t' \equiv t$ $t \equiv t''$	500
446	$A \equiv A' B \equiv B' \epsilon \equiv \epsilon'$	501
447	$\frac{A = A B = B e = e}{\Pi x :^{e} A, B \equiv \Pi x :^{e'} A', B'}$	502
448	$\Pi x :^{e} A. B \equiv \Pi x :^{e} A'. B'$	503
449		504
450	if true then A else $B \equiv A$ if false then A else $B \equiv B$	505
451	If the then M erse $D = M$ if this then M erse $D = D$	505
452	$e \equiv e' A \equiv A' B \equiv B'$	507
452	if e then A else $A \equiv A$ if e then A else $B \equiv$ if e' then A' else B'	508
	$\prod_{i=1}^{n} i = \prod_{i=1}^{n} \prod_{i=1}^{n} i = $	
454	$e \triangleright^* e' \qquad e \equiv e'$	509
455	$\frac{e \triangleright^* e'}{e \equiv e'} \qquad \frac{e \equiv e'}{\lambda x. e \equiv \lambda x. e'}$	510
456	$\epsilon = \epsilon$ $\lambda x \cdot \epsilon = \lambda x \cdot \epsilon$	511
457	$\rho_1 = \rho_1' \rho_2 = \rho_2' \qquad \qquad \rho_1 = \rho_1' \rho_2 = \rho_2' \rho_2 = \rho_2'$	512
458	$\frac{e_1 \equiv e_1' e_2 \equiv e_2'}{e_1 e_2 \equiv e_1' e_2'} \qquad \frac{e_1 \equiv e_1' e_2 \equiv e_2' e_3 \equiv e_3'}{\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \equiv \text{if } e_1' \text{ then } e_2' \text{ else } e_3'}$	513
459	$c_1 c_2 = c_1 c_2$ If c_1 then c_2 else $c_3 = 1$ c_1 then c_2 else c_3	514
460	ho = ho' ho = ho'	515
461	$\frac{e \equiv e'}{Sk. e \equiv Sk. e'} \qquad \frac{e \equiv e'}{\langle e \rangle \equiv \langle e' \rangle}$	516
462	$\partial \kappa \cdot \ell = \partial \kappa \cdot \ell \qquad \langle \ell \rangle = \langle \ell \rangle$	517
463		518
464	Figure 4. λ_S Equivalence	519
465		520
466		521
467	$\vdash \Gamma$ C is a base type	522
468	$\frac{\vdash \Gamma}{\Gamma \vdash \star : \Box \to \star \star} (STAR) \qquad \frac{C \text{ is a base type}}{\Gamma \vdash C : \star \to \star C} (BASE)$	523
469		524
470	$\Gamma \vdash A : * \rightsquigarrow A'$	525
471	$\frac{\Gamma \vdash A : * \rightsquigarrow A'}{\Gamma, x : A \vdash B : * \rightsquigarrow B'} \xrightarrow{\Gamma, x : A \vdash B : * \rightsquigarrow B'}{\Gamma \vdash \Pi x :' A, B : * \rightsquigarrow \Pi x :' A', B'} (PIPURE) \qquad \frac{\Gamma, x : A \vdash B : * \rightsquigarrow B'}{\Gamma \vdash \Pi x :^{\alpha} A, B : * \rightsquigarrow \Pi x :^{\alpha'} A', B'} (PIEFF)$	526
472	$\Gamma, x : A \vdash B : * \rightsquigarrow B' \qquad \qquad \Gamma \vdash \alpha : * \rightsquigarrow \alpha'$	527
473	$\frac{1}{\Gamma \vdash \Pi r \cdot A B \cdot * 2 \to \Pi r \cdot A' B'} (PIPURE) = \frac{1}{\Gamma \vdash \Pi r \cdot A B \cdot * 2 \to \Pi r \cdot A' B'} (PIEFF)$	528
474		529
475		530
476	$\frac{\Gamma \vdash e : \text{bool} ! \iota \rightsquigarrow e' \Gamma \vdash A : * \rightsquigarrow A' \Gamma \vdash B : * \rightsquigarrow B'}{\Gamma \vdash \text{if } e \text{ then } A \text{ else } B : * \rightsquigarrow \text{if } e' \text{ then } A' \text{ else } B'} (\text{Ir})$	531
477	$\Gamma \vdash \text{if } e \text{ then } A \text{ else } B : * \rightarrow \text{if } e' \text{ then } A' \text{ else } B'$	532
478		533
479	Figure 5. λ_S Kinding and CPS Translation of Types	534
480		535
481		536
482		537
483	$\epsilon ::= \mid \text{if } e \text{ then } \epsilon_1 \text{ else } \epsilon_2$ Effects	538
484		539
485		540
486	$\frac{\Gamma \vdash e_1 : \text{bool} ! \iota \Gamma \vdash e_2 : A_2 ! e_2 \Gamma \vdash e_3 : A_3 ! e_3}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \text{if } e_1 \text{ then } A_2 \text{ else } A_3 ! \text{if } e_1 \text{ then } e_2 \text{ else } e_3} \text{ (DIF)}$	541
487	$\Gamma \vdash if e_1$ then e_2 else $e_3 : if e_1$ then A_2 else $A_3 ! if e_1$ then ϵ_2 else ϵ_3	542
488		543
488 489	Figure 6. Syntax and Typing of Effect-Level If	545
490		545
491		546
492		547
493		548
494	_	549
495	5	550