
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Contextual Algebraic Theories:
Generic Boilerplate beyond Abstraction

(Extended Abstract)
Andreas Nuyts

imec-DistriNet, KU Leuven
Belgium

Abstract
Menkar, a proof-assistant for multimodal dependent type theory
(MTT), got stuck among other things under theweight of boilerplate
code. Allais et al. [1] have developed a very effective generic pro-
gramming technique for dealing with boilerplate in second-order
multisorted algebraic theories (SOMATs) – simple type systems
where contexts are lists of types – and Fiore and Szamozvancev [12]
provide a categorical/algebraic foundation for this technique. We
generalize SOMATs as far as our imagination and the techniques
used allow, and propose contextual multisorted algebraic theories
(CMATs) as a central concept in a generic programming technique
which aims to also support multimodal simple type theory (MSTT),
dual-context systems and systems with context exponentiation and
an amazing right adjoint.

1 Motivation
1.1 What makes a mature type system
If developers of type systems and functional programming
languages have any hopes for their languages to be adopted,
they will find themselves trying to check off as many of the
following properties and features as possible:
Admissibility of substitution Substitution of well-typed

terms should be definable as a metatheoretic operation.
Decidability of typing With the right amount of user-pro-

vided annotations, checking that a program is well-typed
should be automatizable.

Soundness The empty type should be uninhabited. This
proves the unprovability of contradictions in dependently
typed systems, but is also a basic sanity check for simple
type systems. Soundness can be proven with a model in
which the empty type is indeed empty.

Canonicity We can prove similar sanity properties for other
types than the empty one, e.g. that every closed boolean
is equal to either true or false. Canonicity is often proved
using a gluing argument [11, 14, 17].

Decidability of equality The conversion rule of type the-
ory, which allows us to cast 𝑎 : 𝐴 to 𝑎 : 𝐵 without
further ado if 𝐴 = 𝐵, implies that we cannot have a type-
checking algorithm without an algorithm for checking
type equality. In dependent type-systems, checking the

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

type equality 𝑃 (𝑡1) ?
= 𝑃 (𝑡2) relies in turn on an algorithm

for checking equality of (open) terms 𝑡1 ?
= 𝑡2.

Normalization One way of deciding equality is by com-
paring both hands’ normal forms for syntactic equality
(or 𝛼-equivalence). In the case of purely functional pro-
grams, normalization is also what will the programs
result. An a priori unsafe normalization algorithm can
be implemented straightforwardly by evaluating in a
value model [1, §7.7]; termination of the algorithm can
be proven again using a gluing argument [3, 11, 13, 17].

Interpretation If a language has side-effects, then we do
not only want to normalize but also run the program.

Compilation Instead of directly running a program, we
can instead compile it to an existing language.

Desugaring This approach is especially appealing if the
existing language is a subset of the current one.

Pretty-printing For human-readable error messages.
Some of the listed items, such as soundness, are entirely in
the domain of metatheory and are often carried out solely
on paper. Others, such as substitution or a type-checker, are
essential parts of an implementation. Normalization, which
may be proven by gluing a presheaf model over renamings
[3, 11, 13, 17], is heavy on the theoretical side but can also
play an essential role in the code base of an implementation
[10, 16]. What all items have in common is that they can
be formalized using a dependently typed proof assistant as
a metatheory, and that doing so involves great amounts of
tedious boilerplate.

1.2 Weeding boilerplate
During the implementation of Menkar [25, 27], a presently
incomplete proof-assistant for multimodal dependent type
theory (MTT [15]), I have become keenly aware of the boiler-
plate issue. Menkar contains a scope-checker, a type-checker,
an equality-checker, a metavariable solver and a weak-head-
normalizer, which all manually traverse all possible syntax
constructors, leading to a matrix of tedious code indexed by
a program component and a syntax constructor,1 and small
changes often affect an entire row or column of this matrix.

Allais et al. [1] greatly alleviate this issue for a class of non-
modal simply-typed languages by using generic program-
ming. They define a universe in which these languages can
1Renaming and substitution were implemented using generics [24].

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Andreas Nuyts

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

be encoded and, by induction on that universe, implement
in a very economical way: a renaming and a substitution
operation, raw syntax and a scope-checker, a bidirectional
type-checker/inferencer with elaboration for the STLC, an
unsafe normalization algorithm, a desugaring operation for
let-expressions and a pretty-printer. Where possible, these
components are almost always implemented generically.

Fiore and Szamozvancev [12] clarify the categorical foun-
dations of this approach. First of all, they identify the lan-
guages encoded in Allais et al.’s inductive universe as a class
of algebraic theories which they leave unnamed but which
could be rightfully called free second-order multisorted al-
gebraic theories (free SOMATs); free in the sense that they
lack an equational theory. Knowing what the languages are,
makes it easier to understand what are their models. Here,
we emphasize that a model in the most general meaning of
the word is just an algebra whose structure gives meaning
to all syntax constructors of the language, giving rise by
recursion to a unique structure-preserving interpretation
map from the syntax. In fact, Fiore and Szamozvancev asso-
ciate two categories of models to a single free SOMAT. One
flavour of models, which we shall call cold models,2 views
substitution as a metatheoretic operation – i.e. not part of the
language – that needs not be modelled. Hot models3 on the
contrary do require a semantics for substitution and provide
the substitution lemma for free. Both categories have the
same initial object (the same syntax), which is one way to
state formally that substitution is admissible.
Allais et al.’s generic notion of semantics only covers

cold models and in fact only very special ones involving
a presheaf over renamings P of what they call ‘values’ and
a non-presheaf A of ‘computations’ [12, lemma 3.2]. Terms
are then modelled as functions sending value environments
to computations. It is quite neat that Fiore and Szamozvancev
fit Allais et al.’s work in a mathematically elegant framework
whose hot models should also encompass state-of-the-art
soundness and parametric models as well as glued models
for canonicity and normalization.

1.3 Taking it beyond abstraction
The free SOMAT framework described above is not directly
usable as a foundation for the metatheory and implemen-
tation of MTT for two reasons: (1) it is simply typed and
(2) it assumes that contexts (substitutions) are lists of types
(tuples of terms), so that the only context extension they can
deal with is the addition of non-modal typed variables as
induced by 𝜆-abstraction. With the current work, we seek to
address (2), so that we can deal with the modal introduction
rule of multimodal simple type theory (MSTT [9]):

2They call these meta-algebras, after the possibility to also deal with
metavariables, which is completely irrelevant in the current discussion.
3They call these Σ-monoids, where Σ specifies the SOMAT and being a
monoid means modelling substitution.

Γ,µ𝜇 ⊢ 𝑡 : 𝑇 @ 𝑝 𝜇 : 𝑝 → 𝑞

Γ ⊢ mod𝜇 𝑡 : ⟨𝜇 | 𝑇 ⟩ @ 𝑞

This rule creates for any modality 𝜇 from mode 𝑝 to mode 𝑞
a term of modal type ⟨𝜇 | 𝑇 ⟩ at mode 𝑞 from a term of type
𝑇 at mode 𝑝 , where the left adjoint µ𝜇 of the modality has
been applied to the context; the rule is typically modelled as
the transposition operation of the dependent right adjoint
(DRA) [5] that models 𝜇. Another application of interest is a
direct typing rule for the ‘amazing’ right adjoint

√
[21] to

exponentiation over a shape type (such as the path interval
I) which has applications in homotopy type theory (HoTT
[31]), and ultimately its dependent generalization given by
the transpension type ≬ [28] which is also relevant to internal
parametricity [4, 8] and nominal type theory [30]:

I→ Γ ⊢ 𝑡 : 𝑇

Γ ⊢ 𝑡♯ : I
√
𝑇

Γ,∀(𝑖 : I).Δ ⊢ 𝑡 : 𝑇
Γ, 𝑖 : I,Δ ⊢ merid 𝑖 𝑡 : ≬ 𝑖 .𝑇

Whereas the lock operation from MSTT was still a mere
context constructor, the introduction rule of

√
really applies

a functorial operation to the context and in the dependent
case we even get a functorial operation that (just like con-
text extension with a dependent type) is not defined on all
contexts but is defined on slices over the current one.

2 Contextual Algebraic Theories
In order to encompass also modal languages such as MSTT
and the amazing right adjoint, we will widen the collection of
supported languages from second-order to contextual multi-
sorted algebraic theories (CMATs). In this section, we discuss
plain MATs, SOMATs and CMATs. We let ‘XMAT’ range over
these three options, which have much in common.

Similar to how we fix a field before speaking about vector
spaces, we will fix a set Sort of sorts before speaking about
XMATs. Sorts take the role of types for SOMATs and more
generally of right-hand-sides (of a judgement) for CMATs. A
free XMAT is given by:
• For each sort 𝜎 , a set of operationsOp(𝜎). Here, 𝜎 stands
for the operation’s output sort.

• For each operation 𝑜 ∈ Op(𝜎), an arity ar(𝑜), which is
a list. The length of the list is the number of arguments
the operator will take. Each element of the list is:
(MAT) a sort, namely the sort of the argument taken,
(SOMAT) a pair (𝜌, 𝜏), where 𝜏 ∈ Sort is the sort of the

argument and 𝜌 ∈ List Sort is the list of sorts of all
variables bound in the argument,

(CMAT) a pair (Φ, 𝜏), where 𝜏 ∈ Sort is the sort of the
argument and Φ is a junctor (see below).

2.1 Plain MATs
So a free MAT is really just a Sort-indexed container [2],
giving rise to a syntax functor 𝐹 : SetSort → SetSort on sort-
indexed sets:

(𝐹𝑋) (𝜎) = Σ(𝑜 ∈ Op(𝜎)) .Π 𝑖 .𝑋 (ar(𝑜)𝑖)
2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Contextual Algebraic Theories: Generic Boilerplate beyond Abstraction (Extended Abstract) Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

The freemonad 𝐹 ∗ over this functor, which satisfies (𝐹 ∗𝑋) (𝜎)
� 𝑋 (𝜎) ⊎ (𝐹𝐹 ∗𝑋) (𝜎), sends an indexed set 𝑋 to the indexed
set 𝐹 ∗𝑋 of terms of the language with metavariables taken
from 𝑋 . Indeed, the above fixpoint equation can be read as ‘a
term of sort 𝜎 is either a metavariable, or an operator applied
to a tuple of appropriately sorted terms’. In particular, 𝐹 ∗∅
is the syntax without metavariables.
The category of models M of the language is the cate-

gory of algebras of the functor 𝐹 , which are indexed sets 𝐴
equipped with indexed functions 𝐹𝐴 ⇒ 𝐴 assigning mean-
ing to each of the operations; or (isomorphically) the category
of monad-algebras of the monad 𝐹 ∗, which are algebras of
𝐹 ∗ respecting monadic unit and multiplication.

We can extend a freeMATwith equality axioms, expressed
as pairs of terms with metavariables 𝑡1,2 ∈ (𝐹 ∗𝑋) (𝜎). Quo-
tienting out the equational theory thus generated, yields a
monad 𝑀 such that 𝑀𝑋 is the indexed set of terms with
metavariables from 𝑋 , up to the equational theory. The mod-
els of this non-free MAT are the monad-algebras of𝑀 .

2.2 Second-order MATs (SOMATs)
To a free SOMAT we associate a cold and a hot syntax
functor4 on sets indexed not by sorts but by judgements
(𝛾 ⊢ 𝜎) ∈ Jud consisting of a context 𝛾 (list of sorts) and a
sort 𝜎 . The cold syntax functor 𝐹c : SetJud → SetJud is:

(𝐹c𝑋) (𝛾 ⊢ 𝜎) = Σ(𝑜 ∈ Op(𝜎)).Π 𝑖 .𝑋 (𝛾 ++ 𝜌𝑖 ⊢ 𝜏𝑖),
where ar(𝑜)𝑖 = (𝜌𝑖 , 𝜏𝑖). The algebras of this functor are the
cold models from section 1.2.
The hot syntax functor 𝐹h on SetJud is similar but adds a

substitution operation. Even though the SOMAT is free, we
can generically impose an equational theory on 𝐹 ∗h by ask-
ing that substitution respects identity and composition and
commutes with all operations, yielding a monad 𝐹 ◦h whose
monad-algebras are the hot models.
A free SOMAT can be extended with equality axioms,

expressed as pairs of terms 𝑡1,2 ∈ (𝐹 ∗h𝑋) ([] ⊢ 𝜎). These are
expressed in the hot syntax so they can refer to substitution
(like the 𝛽-rule for functions in the STLC) and in the empty
context so that they are meaningful in all contexts.

2.3 Contextual MATs (CMATs)
Wenow drop the assumption that contexts and context exten-
sions are necessarily lists of sorts. Instead, we will not only
fix a set of sorts, but also a setCtx of contexts and a set Jun of
junctors. These junctors5 take the role of context extensions
but can in fact be any functors on the category of contexts
and substitutions. They need not even be endo: we will fix
a set Mode of modes, have sets Ctx𝑚 and Sort𝑚 at every
mode𝑚 and a set Jun(𝑚,𝑛) for any domain and codomain
modes𝑚 and 𝑛. CMATs will have dedicated sorts Sub(Γ) for
substitutions and JHom(Φ,Ψ) for junctor morphisms, and a
4In fact, these can be obtained by first translating the SOMAT to a MAT.
5‘Junctor’ is Latin for ‘binder’ and sounds a lot like ‘functor’.

2-dimensional composition structure. Judgements now take
the form (Γ ⊢ 𝜎 @ 𝑚). The cold syntax functor remains
quite similar:

(𝐹c𝑋) (Γ ⊢ 𝜎 @ 𝑚) = Σ(𝑜 ∈ Op(𝜎)).Π 𝑖 .𝑋 (Γ.Φ𝑖 ⊢ 𝜏𝑖 @ 𝑛𝑖),
where ar(𝑜)𝑖 = (Φ𝑖 , 𝜏𝑖) and Φ𝑖 ∈ Jun(𝑚,𝑛𝑖). The hot syntax
functor is similar but again adds a substitution operation,
and there are now clearly a number of laws that we want
to impose generically. Commutation of substitution with
the CMAT operations can be stated generically thanks to
the functoriality of junctors. Again, a specific CMAT can be
further extended with equality axioms.

3 Current Status and Work Plan
Current status. Currently, we have formalized freeMATs,

non-free MATs and their categories of models in Agda [26].
In order to quotient out the equational theory, we are using
higher inductive types in Agda-cubical [32].

Work plan. The plan is to proceed by formalizing CMATs
and implementing/proving a number of the following results:
• Formalize SOMATs and a translation to CMATs,
• Show that we can subsume and generalize Allais et al.’s
work [1], including its applications,

• Define MSTT [9] as a CMAT and prove normalization
as a hot model; combined with Allais et al.’s results,
this effectively amounts to implementing MSTT as a
programming language,

• Define a dual-context modal calculus [19, 29] as a CMAT
and obtain similar results,

• Define a simple type system with amazing right adjoint√
[21] as a CMAT and obtain similar results.

Further ahead. The motivating use cases were multi-
modal dependent type theory (MTT [15]) and the transpen-
sion type [28]. A dependent version of the current work
would be a theory of contextual generalized [6, 7] algebraic
theories (CGATs). The framework for defining and reasoning
about quotient-inductive-inductive-types (QIITs, essentially
the same as GATs) using type-theoretic signatures [18, 20]
seems a good starting point.

With dependent types, I believe that it may also be possible
to support linear and other substructural type systems. In
CMATs, junctors have to act on all contexts. Hence, it is
not possible to remove certain resources from the context as
we have no way to know that they will be there. In CGATs,
junctors would have to act only on slices over the current
context, where we do know that they provide these resources.

Non-instances. Type systems such as adjoint logic [22]
and LSR substructural type theory [23] are not ready to be
defined as either CMATs or CGATs precisely because they
do not work with ‘left adjoint’ operations in the way MTT
does: there is no most general context, functorially obtained,
in which we can type-check a subterm.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Andreas Nuyts

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

References
[1] Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and

James McKinna. 2021. A type- and scope-safe universe of syntaxes
with binding: their semantics and proofs. J. Funct. Program. 31 (2021),
e22. https://doi.org/10.1017/S0956796820000076

[2] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and
Peter Morris. 2015. Indexed containers. Journal of Functional Program-
ming 25 (2015), e5. https://doi.org/10.1017/S095679681500009X

[3] Thorsten Altenkirch and Ambrus Kaposi. 2017. Normalisation by
Evaluation for Type Theory, in Type Theory. Log. Methods Comput.
Sci. 13, 4 (2017). https://doi.org/10.23638/LMCS-13(4:1)2017

[4] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. 2015.
A Presheaf Model of Parametric Type Theory. Electron. Notes in Theor.
Comput. Sci. 319 (2015), 67 – 82. https://doi.org/10.1016/j.entcs.2015.
12.006

[5] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgel-
berg, Andrew M. Pitts, and Bas Spitters. 2020. Modal dependent
type theory and dependent right adjoints. Mathematical Structures
in Computer Science 30, 2 (2020), 118–138. https://doi.org/10.1017/
S0960129519000197

[6] John Cartmell. 1978. Generalised Algebraic Theories and Contextual
Categories. Ph.D. Dissertation.

[7] John Cartmell. 1986. Generalised algebraic theories and contextual
categories. Ann. Pure Appl. Logic 32 (1986), 209–243. https://doi.org/
10.1016/0168-0072(86)90053-9

[8] Evan Cavallo and Robert Harper. 2020. Internal Parametricity for
Cubical Type Theory. In 28th EACSL Annual Conference on Computer
Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. 13:1–
13:17. https://doi.org/10.4230/LIPIcs.CSL.2020.13

[9] Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. 2022.
Sikkel: Multimode Simple Type Theory as an Agda Library. In MSFP.
http://eptcs.web.cse.unsw.edu.au/paper.cgi?MSFP2022.5.pdf

[10] Thierry Coquand. 1996. An algorithm for type-checking dependent
types. Science of Computer Programming 26, 1 (1996), 167–177. https:
//doi.org/10.1016/0167-6423(95)00021-6

[11] Thierry Coquand. 2018. Canonicity and normalization for Dependent
Type Theory. arXiv:1810.09367 https://arxiv.org/abs/1810.09367

[12] Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal metatheory
of second-order abstract syntax. Proc. ACM Program. Lang. 6, POPL
(2022), 1–29. https://doi.org/10.1145/3498715

[13] Daniel Gratzer. 2021. Normalization for multimodal type theory. CoRR
abs/2106.01414 (2021). arXiv:2106.01414 https://arxiv.org/abs/2106.
01414

[14] Daniel Gratzer, Alex Kavvos, Andreas Nuyts, and Lars Birkedal. 2020.
Type Theory à la Mode. (2020). https://anuyts.github.io/files/mtt-
techreport.pdf Technical report.

[15] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2021.
Multimodal Dependent Type Theory. Logical Methods in Computer
Science Volume 17, Issue 3 (July 2021). https://doi.org/10.46298/lmcs-
17(3:11)2021

[16] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Imple-
menting a Modal Dependent Type Theory. Proc. ACM Program. Lang.,
Article 107 (2019), 29 pages. https://doi.org/10.1145/3341711

[17] Ambrus Kaposi, Simon Huber, and Christian Sattler. 2019. Gluing for
Type Theory. In 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund,
Germany (LIPIcs, Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 25:1–25:19. https://doi.org/10.4230/
LIPIcs.FSCD.2019.25

[18] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019. Con-
structing quotient inductive-inductive types. Proc. ACM Program.
Lang. 3, POPL (2019), 2:1–2:24. https://doi.org/10.1145/3290315

[19] G. A. Kavvos. 2020. Dual-Context Calculi for Modal Logic. Log.
Methods Comput. Sci. 16, 3 (2020). https://lmcs.episciences.org/6722

[20] András Kovács. 2022. Type-Theoretic Signatures for Algebraic Theories
and Inductive Types. Ph.D. Dissertation. Eötvös Loránd University,
Budapest, Hungary. https://andraskovacs.github.io/pdfs/phdthesis_
compact.pdf

[21] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. 2018.
Internal Universes in Models of Homotopy Type Theory. In 3rd In-
ternational Conference on Formal Structures for Computation and De-
duction, FSCD 2018, July 9-12, 2018, Oxford, UK. 22:1–22:17. https:
//doi.org/10.4230/LIPIcs.FSCD.2018.22

[22] Daniel R. Licata and Michael Shulman. 2016. Adjoint Logic with a
2-Category of Modes. Springer International Publishing, 219–235.
https://doi.org/10.1007/978-3-319-27683-0_16

[23] Daniel R. Licata, Michael Shulman, and Mitchell Riley. 2017. A Fibra-
tional Framework for Substructural and Modal Logics. In FSCD ’17.
25:1–25:22. https://doi.org/10.4230/LIPIcs.FSCD.2017.25

[24] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh.
2010. A generic deriving mechanism for Haskell. In Proceedings of the
3rd ACM SIGPLAN Symposium on Haskell, Haskell 2010, Baltimore, MD,
USA, 30 September 2010, Jeremy Gibbons (Ed.). ACM, 37–48. https:
//doi.org/10.1145/1863523.1863529

[25] Andreas Nuyts. 2019. Menkar. https://github.com/anuyts/menkar/.
GitHub repository.

[26] Andreas Nuyts. 2022. Algebraic theories with contexts, in cubical
Agda. https://github.com/anuyts/ctx-alg/ GitHub repository.

[27] Andreas Nuyts and Dominique Devriese. 2019. Menkar: Towards a
Multimode Presheaf Proof Assistant. In TYPES.

[28] Andreas Nuyts and Dominique Devriese. 2021. Transpension:
The Right Adjoint to the Pi-type. CoRR abs/2008.08533 (2021).
arXiv:2008.08533 https://arxiv.org/abs/2008.08533

[29] Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction
of modal logic. Mathematical Structures in Computer Science 11, 4
(2001), 511–540. https://doi.org/10.1017/S0960129501003322

[30] Andrew M. Pitts, Justus Matthiesen, and Jasper Derikx. 2015. A De-
pendent Type Theory with Abstractable Names. Electronic Notes in
Theoretical Computer Science 312 (2015), 19 – 50. https://doi.org/10.
1016/j.entcs.2015.04.003 Ninth Workshop on Logical and Semantic
Frameworks, with Applications (LSFA 2014).

[31] The Univalent Foundations Program. 2013. Homotopy Type Theory:
Univalent Foundations of Mathematics. http://homotopytypetheory.
org/book, IAS.

[32] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical
Agda: a dependently typed programming language with univalence
and higher inductive types. PACMPL 3, ICFP (2019), 87:1–87:29. https:
//doi.org/10.1145/3341691

4

https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.4230/LIPIcs.CSL.2020.13
http://eptcs.web.cse.unsw.edu.au/paper.cgi?MSFP2022.5.pdf
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1016/0167-6423(95)00021-6
https://arxiv.org/abs/1810.09367
https://doi.org/10.1145/3498715
https://arxiv.org/abs/2106.01414
https://arxiv.org/abs/2106.01414
https://anuyts.github.io/files/mtt-techreport.pdf
https://anuyts.github.io/files/mtt-techreport.pdf
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1145/3341711
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.1145/3290315
https://lmcs.episciences.org/6722
https://andraskovacs.github.io/pdfs/phdthesis_compact.pdf
https://andraskovacs.github.io/pdfs/phdthesis_compact.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/1863523.1863529
https://github.com/anuyts/menkar/
https://github.com/anuyts/ctx-alg/
https://arxiv.org/abs/2008.08533
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1016/j.entcs.2015.04.003
https://doi.org/10.1016/j.entcs.2015.04.003
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3341691

	Abstract
	1 Motivation
	1.1 What makes a mature type system
	1.2 Weeding boilerplate
	1.3 Taking it beyond abstraction

	2 Contextual Algebraic Theories
	2.1 Plain MATs
	2.2 Second-order MATs (SOMATs)
	2.3 Contextual MATs (CMATs)

	3 Current Status and Work Plan
	References

