
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Idris2-Table: evaluating dependently-typed tables
with the Brown Benchmark for Table Types

Anonymous Author(s)

We report about the ongoing development of Idris2-Table, a li-
brary for type-safe tabular data manipulation. Type-systems
for tables can be subtle, as what operations are allowed on
a table can depend on the internal structure of that table.
Simply-typed languages cannot generally express table op-
erations in a type-safe way — such as the requirement that a
particular column exists. Other languages use features such
as type families, singleton types, and type class constraints
to encode these constraints.
Here, we use dependent types to express a type-safe li-

brary for tables, including many common table operations.
We claim that dependent types allow us to more directly ex-
press the constraints required. We then evaluate our library
using the Brown Benchmark for Tabular Types [6] (the B2T2
paper).

At a high level, we use dependent types to index our table
type by a table-schema type. We make use of type-level
computation, so that only valid operations are permitted,
and to prove properties about returned objects. This library
is written in Idris 2, and makes use of various features for
efficiency and ergonomics of use.

1 Table typing problems
Tables are used to represent and manipulate structured data,
and are ubiquitous throughout data science. Roughly speak-
ing, a table is a two-dimensional collection of data, with
some number of rows, and some number of named, typed
columns.
Here is an example of a table, from the B2T2 Example

Tables:
name age favorite color
Bob 12 blue
Alice 17 green
Eve 13 red

This table has three rows, and three columns, called "name",
"age", and "favorite color". The "name" and "favorite color"
columns hold strings, while the "age" column holds numbers.

As with most areas of programming, when programming
with tables, type systems can help prevent errors. There are
many ways to make errors when using tables. For example,
we may ask for a column that does not exist. We could do
this because we are thinking of the wrong table, because
that column hasn’t been added to our table yet, or simply
because we made a typo. Even if the column does exist, we
may be attempting to use it in a way that is inappropriate
for the type of data stored in that column.

For more complicated operations, we may need our ta-
bles to satisfy other properties. For example, for horizontal
concatenation of two tables, we may want to require those
tables to have the same length as each other. For indexing,
we may want to require that all values in one column are
also contained in a particular collection.
These errors then cause problems when we attempt to

run the program. The simplest method of identifying these
errors is with runtime error messages. But running a data-
science program with a large amount of data can take a
long time. For more subtle errors, we may run the program
in production for months, or even years, before an error
occurs, with potentially disastrous consequences. This slow
feedback loopmakes debugging difficult. A table type-system
can catch these errors earlier, ideally at compile-time.

2 Table type systems
Most production data science nowadays is done in simply- or
dynamically-typed languages, such as Python, R, and Java.
Here is one way we can represent the above table in

Python, using the popular pandas [8] library:

import pandas as pd

students = pd.DataFrame(
[

["Bob", 12, "blue"],
["Alice", 17, "green"],
["Eve", 13, "red"]

],
columns=["name", "age", "favorite color"]

)

But these paradigms do not easily lend themselves to
compile-time table typing systems. In simply-typed languages,
all we can say at compile-time is that a table is a table. In
dynamically-typed languages, we can’t even say that.
For both simply- and dynamically-typed languages, we

can’t express the schema of a table at compile-time. That is,
we can’t specify what columns a table has at compile-time,
nor what types those columns have. Further, we cannot ex-
press, at compile-time, any additional constraints our tables
may need, such as the row count of two tables matching, or
that a given column is sorted.
Instead, we need the schemas of our tables to be avail-

able at runtime. We then throw a runtime error as soon as
we realize that something has gone wrong. But this can be

1



Anon.

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

quite late in the running of a program, leading to the issues
mentioned in the previous section.

Other approaches include custom table type systems, such
as those used in Dex [10], and LINQ [9]. Similarly, extensible
records in Haskell [4] modify the language for a related
type-system. The Haskell HList library [5] works within the
language to achieve the same result, using various features
to simulate dependent types in Haskell [7].
Unfortunately, custom type-systems are not very exten-

sible. If you want to do something the language designers
haven’t considered, you need to modify the language itself.
Similarly, simulating dependent types within Haskell comes
with some limitations [7] due to the separation of type- and
term-level.

3 Idris2-Table
In this work, we use Idris 2 to create the Idris2-Table library.
This library centres around the Table indexed type. This type
is indexed by a table Schema, and operations on tables require
proofs that the necessary properties hold. These proofs can
often be constructed automatically, making practical pro-
gramming possible.

Here is how we encode the example table in our library:

students : Table [<"name" :! String,

"age" :! Nat,

"favorite color" :! String]

students = [<

[<"Bob", 12, "blue" ],

[<"Alice", 17, "green"],

[<"Eve", 13, "red" ]

]

The first three lines of this example are the type-signature
of students, and the next five lines its contents. The type-
signature includes the schema of the table, and the contents
of the table must match the schema for the table to type-
check. If a row has too many fields, too few, or a field of
incorrect type, then it will be rejected at compile-time.

We use SnocList notation ([<...]) for our tables. A SnocList

is just a List, but stored in reverse order ("Snoc" is "Cons"
spelled backwards). We do this, as we think of adding new
rows onto the end of a table, rather than the start, and a
SnocList represents this intuition more naturally. Similarly,
we use SnocList notation for Schemas and rows, as we think of
adding new columns on the right.
We can call functions on our table, such as accessing a

column:
column "name" students -- [<"Bob", "Alice", "Eve"]

or adding a new one:

studentsHair : Table [<"name" :! String,

"age" :! Nat,

"favorite color" :! String,

"hair-color" :! String]

studentsHair = addColumn "hair-color"

[<"brown", "red", "blonde"]

students

Both of these functions are type-safe. The column function
requires that the given column exist in the schema of the
given table. The addColumn function requires that the new
column have the same length as the given table, and produces
a table with a modified schema. Note the new "hair-color"

field in the schema of studentsHair.
If these requirements are not satisfied, then these examples

will be rejected at compile-time.

4 Dependent types
Let us look at how column and addColumn achieve this type-
safety.

Here is the type-signature of column:

column : Field schema name type

-> Table schema

-> SnocList type

This function takes a Field schema name type, which is the
index of a field called name, and of type type, in the schema
schema; and a table of that schema. Unlike a simple type, like
Nat or String, this indexing guarantees the passed field exists
in the schema. Further, the shared type parameter of the Field

argument and return type ensures that the returned column
has the right type.

For ease of use, we use Idris 2’s syntax overloading mech-
anism. The Field type overloads string and integer literal
notation, allowing both of the following:

column "name" students -- [<"Bob", "Alice", "Eve"]

column 0 students -- [<"Bob", "Alice", "Eve"]

We automatically convert the "name" and 0 literals into
Field objects. This conversion occurs at compile-time, using
Idris 2’s proof search. If we ask for a column that doesn’t
exist, or an index that is out of range, then proof search will
fail, and this will be a compile-time error.
In a language without literal notation overloading, we

would instead have to use something like dynamic dispatch,
or interfaces. This would pollute our types, and make it less
clear what is going on.

If we take a column name from the user at runtime, then
clearly the compile-time proof search cannot help us. In this
case, constructing a Field object is precisely the code that
verifies that the column is indeed in the table. So there is
no additional code-complexity cost to the programmer from
this approach.

Let us now look at the type-signature of addColumn:
2



166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Idris2-Table: evaluating dependently-typed tables with the Brown Benchmark for Table Types

addColumn : (0 name : String)

-> (col : SnocList type)

-> (tbl : Table schema)

-> {auto 0 nRows : HasRows tbl (length col)}

-> Table (schema :< name :! type)

Given a schema schema, we canwrite1 schema :< (name :! type)

for the schema augmented with a new column, called name,
of type type. So this function takes a column name, a column,
and a table, and produces a new table with an augmented
schema. The implicit HasRows argument requires that the new
column be the same length as the table.
Similarly to the Field argument for column, we can use

Idris 2’s proof search to help find the HasRows argument for
addColumn. If the other arguments are known statically, then
this argument will be found precisely when the lengths
match. If the other arguments are not known statically, then
constructing this argument is again precisely the code that
checks this property holds.
The 0s in the type-signature of addColumn, on name and the

HasRows parameter, mean that these parameters are erased at
runtime. This signature uses the implementation of Quan-
titative Type Theory [1] in Idris 2 [2]. We can erase these
arguments as the type-level information is not required at
runtime.

Often, we can erase the column names from the compiled
program entirely, with column name string literals being
compiled down into indexes into the table, or even, as in this
example, nothing at all. We only need to keep the column
names if we actually use the contents of the name, such as
printing them, or comparing them with user input.

5 B2T2
We developed this library in response to the Brown Bench-
mark for Tabular Types (the B2T2 paper) [6].
The B2T2 paper describes a collection of desirable prop-

erties for a table type-system, and a benchmark for such
type-systems to compare to. It provides a reference Table
API, a collection of Sample Programs, and a collection of
incorrect Errors. A table type-system should enable their
notion of tables to use the Table API, to implement the Sam-
ple Programs, and prevent the Errors. Further, the feedback
from the Errors should enable a programmer to correct those
Errors.
We demonstrate the wide applicability of our approach

by implementing the entire B2T2 Table API. The majority of
the API is included directly in our library. Some of the API
is more naturally expressed in Idris 2 in a different way. For
these components, we included the natural version in our
library, and provide an implementation of the B2T2 version
separately. We discuss the difficulties of working with the
B2T2 versions in a dependently-typed language, and how
our version takes advantage of the Idris 2 type-checker.
1Brackets for clarity

Turning to the B2T2 Example Programs, we demonstrate
the usability of our approach by providing sample implemen-
tations of all the Example Programs using our library. Again,
some of these programs are more naturally expressed in Idris
2 in a different way to that provided in the B2T2 paper. We
discuss how these different phrasings are interpreted by the
Idris 2 type-checker.
Finally, for the B2T2 Errors, we demonstrate type-safety

of our approach by providing sample implementations of
both all the incorrect and all the corrected programs. The
incorrect programs all fail to type-check, while the corrected
programs all type-check successfully. We also discuss how
the error messages from the incorrect programs can help
lead the programmer to the corrected versions.

6 What next?
This library is written in pure Idris 2, as the primary focus
is on the interface, rather than execution speed. We could
write FFI bindings to a more efficient representation, in either
space or time, with the same interface. This could be done
either in-memory, in a lower level language, or by connecting
to an external database.

Another feature we could add, would be to introduce data-
base indexing. One way to do this would be to write a data-
base index as a proof type on the table. Alternatively, we
could abstract over the internal runtime structure of the rows
of our table. This would be more efficient at runtime, and
different container types would then correspond to different
indexing methods on the table.

There are also other options for the structure of our schema.
In Idris2-Table, we allow duplicate column names, and the
ordering of columns is important. But neither of these things
are required by dependent types — this was just what was
easiest to implement. We could abstract over the internal
runtime structure of the columns of our table, with different
container types. Then these different container types would
correspond to different row-typing systems.
Finally, we could improve the error messages for incor-

rect programs, through some sort of error reflection. Idris 2
does not yet support error reflection, but plans to introduce
something similar to Idris 1’s error reflection [3]. This would
allow us to more easily guide programmers to their correct
solution — especially those programmers unfamiliar with
dependent types.

We hope a presentation in TyDE could help us refine our
preliminary results, and solicit related works. We would
like to know what table-tying problems people find hard,
interesting, or exciting.

References
[1] Robert Atkey. 2018. The Syntax and Semantics of Quantitative Type

Theory. In LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, July 9–12, 2018, Oxford, United Kingdom. https:
//doi.org/10.1145/3209108.3209189

3

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189


Anon.

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

[2] Edwin C. Brady. 2021. Idris 2: Quantitative Type Theory in Practice.
In 35th European Conference on Object-Oriented Programming, ECOOP
2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs,
Vol. 194), Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 9:1–9:26. https://doi.org/10.4230/
LIPIcs.ECOOP.2021.9

[3] David Raymond Christiansen. 2014. Reflect on your mistakes! Light-
weight domain-specific error messages. In Preproceedings of the 15th
Symposium on Trends in Functional Programming.

[4] Mark P Jones and Simon Peyton Jones. 1999. Lightweight
Extensible Records for Haskell. In Haskell Workshop. ACM,
ACM. https://www.microsoft.com/en-us/research/publication/
lightweight-extensible-records-for-haskell/ Paris.

[5] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly typed
heterogeneous collections. Proceedings of the ACM SIGPLAN 2004
Haskell Workshop, Haskell’04 (01 2004), 96–107. https://doi.org/10.
1145/1017472.1017488

[6] Kuang-Chen Lu, Ben Greenman, , and Shriram Krishnamurthi. 2022.
Types for Tables: A Language Design Benchmark. The Art, Science,
and Engineering of Programming 6, 2 (2022), 26 pages.

[7] Conor McBride. 2002. Faking it Simulating dependent types in Haskell.
Journal of Functional Programming 12, 4-5 (2002), 375–392. https:
//doi.org/10.1017/S0956796802004355

[8] Wes Mckinney. 2011. pandas: a Foundational Python Library for Data
Analysis and Statistics. Python High Performance Science Computer (1
2011).

[9] Erik Meijer. 2011. The World According to LINQ. Commun. ACM 54,
10 (oct 2011), 45–51. https://doi.org/10.1145/2001269.2001285

[10] Adam Paszke, Daniel Johnson, David Duvenaud, Dimitrios Vytiniotis,
Alexey Radul, Matthew Johnson, Jonathan Ragan-Kelley, and Dougal
Maclaurin. 2021. Getting to the Point. Index Sets and Parallelism-
Preserving Autodiff for Pointful Array Programming. https://doi.org/
10.48550/ARXIV.2104.05372

4

https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://www.microsoft.com/en-us/research/publication/lightweight-extensible-records-for-haskell/
https://www.microsoft.com/en-us/research/publication/lightweight-extensible-records-for-haskell/
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1017/S0956796802004355
https://doi.org/10.1017/S0956796802004355
https://doi.org/10.1145/2001269.2001285
https://doi.org/10.48550/ARXIV.2104.05372
https://doi.org/10.48550/ARXIV.2104.05372

	1 Table typing problems
	2 Table type systems
	3 Idris2-Table
	4 Dependent types
	5 B2T2
	6 What next?
	References

