
Extended Abstract: Affine killing
Semantics for stopping the ParT

Kiko Fernandez-Reyes
Uppsala University

kiko.fernandez@it.uu.se

Dave Clarke
Uppsala University
dave.clarke@it.uu.se

Abstract
Speculative, parallel abstractions allow that, once a result is com-
puted, the remaining (unnecessary) speculative computations can
be safely stopped. However, it is difficult to know when it is safe
to stop an ongoing computation. This paper presents a refinement
of the parallel speculative ParT abstraction [3] with an affine type
system that allows in-place updates, and killing speculative com-
putations using thread-local reasoning. There is ongoing work to
prove the soundness of the calculus and implement it in the Encore
language [1].

CCS Concepts • Theory of computation → Functional con-
structs; Type structures; Parallel computing models; Type theory;

Keywords type systems, concurrency, tasks, parallelism, specula-
tive parallelism, concurrency
ACM Reference format:
Kiko Fernandez-Reyes and Dave Clarke. 2017. Extended Abstract: Affine
killing. In Proceedings of , Oxford, United Kingdom, September 2017 (TyDe’17),
3 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction
Parallel languages, such as Encore [1], can spawn potentially mil-
lions of parallel computations; each spawned computation returns a
future, a placeholder for the result when the spawned computation
finishes. Without high-level abstractions, the creation of complex
coordination workflows using futures becomes a difficult task, e.g.
the creation and coordination of pipeline parallelism handling thou-
sand of tasks and killing speculative computations in such setting
is not trivial. ParT [3] is a speculative, parallel abstraction that
simplifies the process of spawning parallel tasks and killing unnec-
essary computations. Values and ongoing parallel computations
are lifted to the ParT abstraction; the programmer controls this ab-
straction via combinators (explained later). Consider the following
example, in Encore, which uses combinators from the ParT parallel
abstraction:
1 class Facebook

2 def findInfoFb(user: User): Info

3 ...

4 end

Partly funded by the EU project FP7-612985 UpScale: From Inherent Concurrency to
Massive Parallelism through Type-based Optimisations.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
TyDe’17, Oxford, United Kingdom
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

5 end
6 fun findFriend(user: User, t: Twitter,

7 fb: Facebook): Par[Info]
8 val twInfo = {t} >> (fun x => x.findInfoTw(user))

9 val fbInfo = {fb} >> (fun x => x.findInfoFb(user))

10 twInfo >> updateDB

11 getPhoneNumber << (twInfo || fbInfo)

12 end

This code performs an asynchronous parallel search of a person’s
name on two different social networks. The example starts by lift-
ing values to the ParT abstraction (lines 8 and 9, {t} and {fb}). The
anonymous functions use the asynchronous and parallel map com-
binator (≫ :: Par[t]→ (t → t ′) → Par[t ′]), which asynchronously
applies the function given as second argument to the first argument,
returning immediately a new ParT on which more operations can
be done, such as saving the result into a database as soon as the
information is available (line 10). Next, the composition combinator
(∥ :: Par[t] → Par[t] → Par[t]) produces a new ParT that groups
the ParTs twInfo and fbInfo (line 11). Afterwards, the prune com-
binator (≪ :: (Fut[Maybe[t]] → Par[t ′]) → Par[t] → Par[t ′])
takes two arguments, a function and a ParT with ongoing com-
putations and returns a new ParT abstraction. The function starts
immediately and its first argument represents the value of the first
computation that finishes from the ParT (given as second argument
to the prune combinator), if any. In this case, prune selects the first
result returned by the computations from lines 8 and 9, and apply
the function getPhoneNumber to the result, killing the remaining
computations as they are no longer needed. However, the variable
twInfo has two aliases (lines 10 and 11) and, if the fbInfo compu-
tation finishes before the one from Twitter, the ParT abstraction
should not merrily kill the ongoing Twitter computation – other
computations depend on twInfo.

Our work leverages static information from an affine type system
to safely kill computations using thread-local reasoning and optimise
the ParT abstraction – currently, we do not handle side-effects in
speculative computations.

2 Affine type systems
An affine type system allows values to be used once or in an unre-
stricted manner [4]. The example given above could potentially be
encoded as:
1 class Facebook

2 def findInfoFb(user: read User): lin Info

3 ...

4 end
5 end
6
7 fun findFriend(user: read User, t: read Twitter,

8 fb: read Facebook): lin Par[lin Info]

9 ...

TyDe’17, September 2017, Oxford, United Kingdom Kiko Fernandez-Reyes and Dave Clarke

10 end

This refined example adds affine annotations lin and read
(lines 2, 7 and 8) to indicate whether the variables can be aliased,
where lin does not allow aliasing but read allows unrestricted
aliasing.

With these annotations in place, an affine type system gives
static aliasing guarantees that can be exploited by parallel speculative
abstractions.

3 Core idea
Speculative, parallel abstractions can leverage the static information
of affine type systems and use thread-local reasoning to safely kill
ongoing speculative computations.

We define an affine type system that uses type-directed elabora-
tion rules to add affine annotations to parallel combinators (shown
in Section 1); the specialised affine combinators are implemented
to exploit linearity (if present). We also make the composition
(| |) combinator polymorphic and define a subtype affine relation,
lin <: read , so that a linear ParT can contain linear and unre-
stricted references but not the other way around – as that would
be unsound. Thus, the type-directed elaboration rule for the com-
position combinator (in line 11) proceeds as:

∆; Γ1 ⊢ twInfo ↪→ twInfo′ : κ1 Par[T]
∆; Γ2 ⊢ fbInfo ↪→ fbInfo′ : κ2 Par[T]

∆; Γ1 Γ2 ⊢ twInfo | | fbInfo ↪→ twInfo′ | |lin fbInfo′ : lin Par[T]

where ∆ represents the unrestricted environment, Γ1 Γ2 the linear
one (with Γ1 ∩ Γ2 = ∅), κ1 = read (since twInfo is aliased, lines 8
and 10) and κ2 = lin (line 2 from the affine example).

The example above, after the type-directed elaboration rules,
ends up with the following runtime annotations:

∆; Γ1 Γ2 ⊢ {twInfo}read | |lin {fbInfo}lin : lin Par[T]

These annotations enable a kind of dynamic dispatch based on the
structure of the ParT. All combinators benefit from it, performing
(at least) in-place updates [5] whenever deemed safe. For example,
the map combinator (≫) applied to the current example produces
new values, re-using the memory allocated for the linear singleton
structure in {fbInfo}lin and allocating new memory for the new
ParT resulting from the other one (as {twInfo}read can be aliased).

The prune combinator further exploits the static information
and dynamic dispatch to decide which computations can be safely
killed. Figure 1 is a pictographical representation of the example so
far; the twInfo ParT has multiple dependencies (namely the update
of the database and the possibility to fetch a phone number). These
dependencies – statically catched by the affine mode – prevent the
runtime from killing its underlaying ongoing computations as that
would be unsound. The case for the fbInfo ParT is different: the
type system ensures that this computation does not have depen-
dencies and it is aliased-free – its result can only be used in a single
place – making it a safe candidate to kill. In this example, if the
Twitter computation finishes before the one from Facebook, it is
easy to see how killing the ongoing Facebook computation cannot
have any effect on other computations – we can apply thread-local
reasoning to killing the Facebook computation. Below are the run-
time rules, for this scenario, for pruning and killing computations

fbInfo>> λ

>> updateDB

||

fb

t

phoneNumber <<

>> λ

lin
lin

read

twInfo

Figure 1. Pictographical representation of example in Introduction

(we have abbreviated twInfo to t and fbInfo to b):
[Prune]
(taskд E[v ≪lin ({t}read | |lin {b}lin)]) →

(taskf (peeklin {t}read | |lin {b}lin)) (futf) (taskд E[v f])

[Linear Peeking]
(taskд (peeklin ({t }read | |lin {b }lin))) →

(taskд (Just t)) (kill д)
⋃

h ∈ linDeps(b)

(kill h)

[Kill]

(taskд b) (kill д) → (kill д)
⋃

h ∈ linDeps(b)

(kill h)

The prune combinator relies on the hidden runtime function
peek [3] that kills the speculative computations (rule Linear Peek-
ing) applying thread-local reasoning: safely traversing asynchro-
nous computations spawned by the fbInfo (linDeps(b)) and killing
them (rule Kill). Therefore, our approach to killing computations
respects unrestricted computations and kills the linear ones.

4 Related work
One approach [6, 7] to safely killed speculative computations re-
lies on adding well-defined safe-points, defined by the program-
mer, where it is safe to stop a speculative computation. This ap-
proach puts more responsibility on the programmer, who has to
specify the number and position of these checkpoints. Other ap-
proach [8] performs a privatisation of their address space to allow
safe-independent mutation. This is not necessary in our setting
since we are dealing with a functional language and the affine
type system takes care of the aliasing problem. Our previous ap-
proach [3] was formalised such as it dynamically tracks the de-
pendencies among parallel computations in the ParT, relying on
a global view of the system that determines when a computation
does not have any more dependencies. In terms of implementation,
the initial design creates a runtime representation of connections
between ParTs, represented as a directed acyclic graph (DAG). Each
node in the graph represents a singleton value and, upon executing
the prune combinator, the runtime traverses the DAG checking
which computations have more than one forward connection, i.e., a
ParT used more than once by different computations. This approach
was never implemented due to the high implementation complexity
of the runtime and garbage collection protocol [2].

References
[1] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes,

Einar Broch Johnsen, Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias Wrigstad,
and Albert Mingkun Yang. 2015. Parallel Objects for Multicores: A Glimpse

Extended Abstract: Affine killing TyDe’17, September 2017, Oxford, United Kingdom

at the Parallel Language Encore. In Formal Methods for Multicore Program-
ming - 15th International School on Formal Methods for the Design of Com-
puter, Communication, and Software Systems, SFM 2015, Bertinoro, Italy, June
15-19, 2015, Advanced Lectures (Lecture Notes in Computer Science), Marco
Bernardo and Einar Broch Johnsen (Eds.), Vol. 9104. Springer, 1–56. DOI:
https://doi.org/10.1007/978-3-319-18941-3_1

[2] Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully concurrent garbage collec-
tion of actors on many-core machines. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.).
ACM, 553–570. DOI:https://doi.org/10.1145/2509136.2509557

[3] Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. 2016. ParT: An
Asynchronous Parallel Abstraction for Speculative Pipeline Computations. In
Coordination Models and Languages - 18th IFIP WG 6.1 International Conference,
COORDINATION 2016, Held as Part of the 11th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece,
June 6-9, 2016, Proceedings (Lecture Notes in Computer Science), Alberto Lluch-
Lafuente and José Proença (Eds.), Vol. 9686. Springer, 101–120. DOI:https://doi.
org/10.1007/978-3-319-39519-7_7

[4] Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102. DOI:
https://doi.org/10.1016/0304-3975(87)90045-4

[5] Martin Hofmann. 2000. A Type System for Bounded Space and Functional
In-Place Update. Nord. J. Comput. 7, 4 (2000), 258–289.

[6] Shams Imam and Vivek Sarkar. 2015. The Eureka Programming Model for
Speculative Task Parallelism. In 29th European Conference on Object-Oriented
Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic. 421–444. DOI:
https://doi.org/10.4230/LIPIcs.ECOOP.2015.421

[7] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David
Holmes. 2005. Java Concurrency in Practice. Addison-Wesley Professional.

[8] Hari K. Pyla, Calvin J. Ribbens, and Srinidhi Varadarajan. 2011. Exploiting
coarse-grain speculative parallelism. In Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 -
27, 2011, Cristina Videira Lopes and Kathleen Fisher (Eds.). ACM, 555–574. DOI:
https://doi.org/10.1145/2048066.2048110

https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1145/2509136.2509557
https://doi.org/10.1007/978-3-319-39519-7_7
https://doi.org/10.1007/978-3-319-39519-7_7
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.421
https://doi.org/10.1145/2048066.2048110

	Abstract
	1 Introduction
	2 Affine type systems
	3 Core idea
	4 Related work
	References

