Cocent™: Giving Systems Engineers A Stepping Stone

Extended Abstract

Zilin Chen
UNSW, Australia
zilin.chen@student.unsw.edu.au

Abstract

This paper presents our vision and work in progress on deploy-
ing a high-level functional language with a rich and accessible
type system for better modelling and verifying systems pro-
grams.

CCS Concepts o Software and its engineering — Soft-
ware verification; Abstraction, modeling and modularity;
Specialized application languages;

Keywords Cogent, Systems programming, Refinement

1 Background

We have previously presented the CoGent project for reducing
formal verification effort by code and proof co-generation [2,
10, 11]. We showed that it is theoretically possible to produce
file systems (FSes) with end-to-end verification using the
CogGenT framework.

CogGenT is a restricted purely functional language that we
designed to enable both destructive updates, which are essen-
tial in systems programming, and equational reasoning, which
would ease manual proof of systems’ behaviour. The language
features a uniqueness type system [13] to mask destructive
updates while exposing a functional semantics for equational
reasoning. It is restricted in the sense that loops and general
recursion are both disallowed. Thus any real world CoGENT
program needs to be paired with some C code by means of
the foreign function interface (FFI), in order to implement
a) datatypes and algorithms which rely on sharing writable
pointers (thus violating uniqueness); b) impure code; c) loop-
ing combinators and iteration schemes; and d) interfaces to
Linux kernel code.

Figure 1 summaries the CoGent framework (ignoring the
blue components for now, which are our new additions), with
all user input indicated with dotted lines.

To develop a (file) system, systems engineers must supply
both source programs written in CoGenT and the complemen-
tary C code consisting of abstract data types (ADTs), Linux
interfaces and so forth, which is linked with the C code gener-
ated by the CoGgent compiler. Much of this manually-written
C code can be shared between systems (e.g. red-black trees,
Linux VFS wrappers).

TyDe’17, September 03, 2017, Oxford, United Kingdom
© 2017 Copyright held by the owner/author(s).

Functional correctness

specification
6
U Cogent! | has !
Cogent ———————»{Cogent" semantics
___DioE |
2 4
| 3
Cogent i has | oo0ent semantics o
program 5

lgenerates I.

N e E VU ittt g

has X has | '
C }—» C semantics r«——— ADT library |

.

Figure 1. Overview of the CoGenT framework

To verify such a system, proof engineers define a func-
tional correctness specification in Isabelle/HOL, then manu-
ally prove that the CogenT program (pink arrow @) and the
ADT implementations (pink arrow @) are together a refine-
ment of this abstract specification. The refinement proof that
completes the end-to-end verification is generated automati-
cally by the CoGent compiler (green arrow @).

2 Challenges

For our first version of CoGent, we prioritised the completion
of the full compilation and verification pipeline over the fine
tuning of usability and performance. This puts us in a position
to conduct a series of case studies to pinpoint the weakness of
CoGenT, and to evaluate whether it is in fact simplifying the
goal of developing verified systems. We were able to answer
the latter in the affirmative [2], and identified a number of
language features and optimisations necessary to address the
former. We also identified three more fundamental challenges
we need to tackle:

Reliance on Testing Testing is essential even in the pres-
ence of formal verification. Formal proof is technically com-
plicated and labour intensive. Effective testing has a great
chance of avoiding fruitless attempts to prove broken defini-
tions. But systems code is intrinsically difficult to test and
to debug, especially in the CoGENT ecosystem, with which

TyDe’17, September 03, 2017, Oxford, United Kingdom

the programmers are less familiar. Therefore it would be de-
lightful if CoGeNT programs are correct by construction and
excessive manual testing can be eliminated.

Design for Verification A correct implementation unneces-
sarily means that it can be formally verified. Systems must be
designed in a modular fashion that is amenable to verification.
Exactly what designs are easy to verify, however, is not obvi-
ous to systems engineers, as they generally lack knowledge
or experience in formal verification. In our case studies, we
designed a verification-friendly FS from scratch, as well as
ports of existing Linux FSes with architecture that mirrored
the original C code. ' Systems designed in these two strate-
gies manifest distinct characteristics in verification: while we
were able to prove properties of the former [1], the latter in
general does not make use of any of CoGenT’s advantages
for verification, which makes it as difficult as verifying the C
code on which it was based.

Level of Abstraction As we explained in Section 1, COGENT
heavily depends on its FFI to C, which usually makes it inter-
spersed with a significant amount of C code. For performance
reasons and to comply with interfaces used in native C imple-
mentations, our ADT library (and wrapper code) is distinctly
imperative in flavour. For instance, instead of combinators
such as map and fold, the interface provides unwieldy loop-
ing functions which allow for early exit, accumulated state,
or other lower-level concerns. Therefore, the unfortunately
low-level interface, combined with the uniqueness type sys-
tem, forces the programmer to think on a lower level than one
would expect from an ordinary functional language.

3 Cocent" Language

To address the aforementioned challenges, I propose CoGent
language, a higher-level general-purpose extension to COGENT,
which will play an important role in our framework (blue
components in Figure 1).

Cocent mainly differs from CoGent in the following as-
pects. Firstly, it supports general recursion and recursive
datatypes. Secondly, it relaxes the uniqueness constraints
of Cocent, which hides the capability details. They together
make it possible to prototype a system entirely in CoGent'.
This is in contrast to CoGent, where low-level concerns may
invite users to mirror the structure of the native C code, unno-
ticeably. Finally, Cocent' features a dependent type system
together with other handy type extensions which allow precise
properties to be stated in the types.

The power of dependent type systems is widely acknowl-
edged, however we cannot neglect the steep learning curve
and the unfriendly user interface they pose on mainstream
programmers. For example, Lindley and McBride [9] show
the pains of using dependent types in Haskell. Even in a na-
tively dependently typed language, e.g. Idris [4], it is still

Mirroring the structure of the C code was not intended.

Zilin Chen

quite involved to manually construct proof terms, which are
vulnerable to changes.

To alleviate this burden on systems programmers, COGENT'
is equipped with an SMT-based proof search mechanism,
which allows users to concentrate on the algorithms of their
programs during prototyping. LiquidHaskell [12] is a suc-
cessful example in this spirit, and F* applies the idea further
to writing and verifying low-level programs such as crypto-
graphic algorithms [3].

With these features, Cocent! leads to a workflow which
better leverages the CoGenT framework. As first step in the
development process, systems programmers can prototype
fully in Cocent (with the exception of calls into the kernel)
and execute the program. CoGent'’s rich type system dimin-
ishes the need for testing, and QuickCheck [5] style auto-
matic testing can be deployed to further reduce manual effort
(see Section 4). The functional nature of Cocent! language
encourages programmers to design the systems with abstrac-
tion and modularity in mind. Cocent’s semantic is closer
to the abstract correctness specification, merely differing in
datatypes and algorithmic aspects, where the refinement proof
(arrow ® in Figure 1) can be conducted semi-automatically
and systematically [6, 8]. Based on the Cocent implementa-
tion, the programmers then gradually refine (arrow @ and ®)
the implementation to CogenT or to C, taking capabilities and
other low-level concerns into account, to reach acceptable
performance.

Having our own Cocent! has advantages over using exist-
ing languages in the wild. As Cocent! will be incrementally
rewritten to CoGENT, it has to be capable of connecting to
Cocent seamlessly. Since Cocent' is an extension of CoGENT,
language interoperability comes nearly for free (modulo type
system difference). Additionally, much of the toolchain for
Cogenr, such as the FFI and the code generators, is readily
available and can be shared with minimal adaptation.

4 Property-based Testing

Applying QuickCheck (or in general, property-based testing)
to systems is not new (e.g. [7]), but the presence of formal ver-
ification gives rise to more opportunities. The properties that
we have specified for formal verification can be reused for
property-based testing. It allows us to test before we attempt
the costly one-step manual proof between the functional cor-
rectness specification and Cogent / ADTs (arrow @ and @ in
Figure 1). Importantly, it does not incur extra system design
overhead to adapt to property-based testing.

In practice, our abstract specification is not executable
hence unsuitable for testing; we can nevertheless reach as far
as the Cocent' level 2 , leaving arrow ® as a straightforward
refinement proof. A separate paper is in submission, detailing
our observation and experiments on this theme.

2 As a proof of concept, we use Haskell in our experiments instead of CoGentl
so that we can use the Haskell QuickCheck package as-is.

Cogent!

References
[1] Sidney Amani. 2016. A Methodology for Trustworthy File Systems.

[2

[3

[4

[5

[6

]

[t}

=

=

=

PhD Thesis. CSE, UNSW, Sydney, Australia.

Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter
Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,
Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance File
System Implementations. In ASPLOS. Atlanta, GA, USA, 175-188.
Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Citdlin Hritcu, Jonathan Protzenko, Tahina Ramananandro, Aseem
Rastogi, Nikhil Swamy, Peng Wang, Santiago Zanella-Béguelin, and
Jean-Karim Zinzindohoué. 2017. Verified Low-Level Programming

Embedded in F*. arXiv:1703.00053. (Feb 2017). http://arxiv.

org/abs/1703.00053

Edwin C. Brady. 2011. IDRIS — Systems Programming Meets Full
Dependent Types. In 2011 PLPV. New York, NY, USA, 43-54. http:
//doi.acm.org/10.1145/1929529.1929536

Koen Claessen and John Hughes. 2000. QuickCheck: A Light-
weight Tool for Random Testing of Haskell Programs. In 5th ICFP.
New York, NY, USA, 268-279. http://doi.acm.org/10.1145/
351240.351266

Willem-Paul de Roever and Kai Engelhardt. 1998. Data Refinement:
Model-Oriented Proof Methods and their Comparison. Number 47.
United Kingdom.

TyDe’17, September 03, 2017, Oxford, United Kingdom

[7]

[8

—

[9

—

[10]

[11]

[12]

[13]

Citdlin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-
Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and
Leonidas Lampropoulos. 2013. Testing Noninterference, Quickly. In
Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’13). New York, NY, USA, 455-468.
http://doi.acm.org/10.1145/2500365.2500574

Peter Lammich. 2013. Automatic Data Refinement. In 4th ITP. LNCS,
Vol. 7998. 84-99.

S. Lindley and C. McBride. 2013. Hasochism: The Pleasure and Pain
of Dependently Typed Haskell Programming. In 2013 ACM SIGPLAN
Symp. Haskell. New York, NY, USA, 81-92. http://doi.acm.org/
10.1145/2503778.2503786

Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani,
Japheth Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and
Gerwin Klein. 2016. Refinement Through Restraint: Bringing Down
the Cost of Verification. In /CFP. Nara, Japan.

The Cogent Team. 2017. Cocent Homepage. (2017). http://ts.
data6l.csiro.au/projects/TS/cogent.pml.

Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell:
Experience with Refinement Types in the Real World. In 2014 ACM
SIGPLAN Symp. Haskell. New York, NY, USA, 39-51. http://doi.
acm.org/10.1145/2633357.2633366

Philip Wadler. 1990. Linear types can change the world!. In Program-
ming Concepts and Methods.

http://arxiv.org/abs/1703.00053
http://arxiv.org/abs/1703.00053
http://doi.acm.org/10.1145/1929529.1929536
http://doi.acm.org/10.1145/1929529.1929536
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/2500365.2500574
http://doi.acm.org/10.1145/2503778.2503786
http://doi.acm.org/10.1145/2503778.2503786
http://ts.data61.csiro.au/projects/TS/cogent.pml
http://ts.data61.csiro.au/projects/TS/cogent.pml
http://doi.acm.org/10.1145/2633357.2633366
http://doi.acm.org/10.1145/2633357.2633366

	Abstract
	1 Background
	2 Challenges
	3 Cogent"322A37E Language
	4 Property-based Testing
	References

