
On Ringads and Foldables
(Extended Abstract)

James McKinna
LFCS, School of Informatics
University of Edinburgh

UK
james.mckinna@ed.ac.uk

Abstract
While trying to understand TorstenGrust’s 2015MPC keynote
on comprehension syntax [Grust 2015], and Jeremy Gib-
bons’s 2016WadlerFest essay on “RingadComprehensions” [Gib-
bons 2016], and their relationship to Haskell’s Foldable type-
class, I arrived at the following characterisations:

• A Functor f is Foldable iff Every Monoid instance a is
an f -Algebra instance

• A Monad f is a Ringad iff Every f -Algebra instance a
is a Monoid instance

The first is (perhaps) folklore, and appears in Uustalu’s paper
for the Oliveira Festschrift [Uustalu 2016], but was indepen-
dently rediscovered during my research. The second is, as
far as I know, new.

1 Introduction
Generic Programming has customarily concerned itself with
abstraction over the kind of types. But as the abstract indi-
cates, this paper concerns two related results, each charac-
terising, in a generic way, a class of higher kind objects, in
this case type constructors, representing collections or con-
tainers. Moreover, each characterisation takes the form of a
higher-order constraint, expressible in the hereditary Harrop
fragment. As such it is a contribution to the WGP strand
of TyDe, but also indirectly, to the Haskell programing lan-
guage, where such qualified class constraints are once again
the subject of ongoing research [Bottu et al. 2017] (the paper
freely abuses haskell’s type class syntax as a shorthand to
describe algebraic structure, but the reader should be in no
doubt that what follows is neither legal haskell, nor conforms
to existing definitions in the standard library).

The first concerns the well-known Haskell Foldable type
class, or at least, that part of it concerned with Functor
instances:

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
TyDe 2017, September 03, 2017, Mathematical Institute, Oxford, UK
© 2017 Copyright held by the owner/author(s).

class Functor f => Foldable f where
fold :: Monoid m =>

(a -> m) -> f a -> m

abstracting over the list fold operation from lists to arbi-
trary collection functors f (true haskell uses the more prolix
identitfier foldMap, and does not require f to be a Functor).
Given a mapping from a type a to a Monoid instance m,
the generic fold should be understood as a specification of
‘rolling up’ a collection f a of a-elements, by mapping them
to the monoid, and using its operations to reduce the collec-
tion f m of monoid elements down to a single m-value. As
such, fold is nothingmore or less than a (non-commutative!)
instance of Eindhoven Quantifier Notation, with trivial fil-
tering function [Backhouse and Michaelis 2006].

The second concerns the much less well-known type class,
Ringad, recently recuperated by Jeremy Gibbons [Gibbons
2016] following pioneering work by Phil Wadler. Ringads
are an attempt to capture a common pattern of monad com-
prehensions arising from functional language representa-
tions of SQL queries [Grust 2015], abstracted over the under-
lying type of collection functor. A key property of compre-
hensions in the database setting is that null, and singleton
comprehensions should exist, but also that they may be ag-
gregated via an abstract binary union operation. In other
words, Ringads are Monad instances (the return opera-
tion giving rise to singleton collections in the usual way;
bind permits ‘collections of collections’ to be collapsed in
exactly the ways we expect from comprehension notation)
which moreover satisfy the MonadZero and MonadPlus
constraints:

class (MonadZero f, MonadPlus f) => Ringad f where

In each case, the fundamental relationship, or at least, a
more primitive one to which the complex class definition
may be reduced, exists between Monoid structure on the
one hand, and Algebra structure on the other, with:

• class Monoid a where
0 :: a
⊕ :: a -> a -> a

• class Functor f => Algebra f a where
alg :: f a -> a



TyDe 2017, September 03, 2017, Mathematical Institute, Oxford, UK James McKinna

2 On Foldables
An alternative definition of Foldable, were haskell to sup-
port it [Bottu et al. 2017] may be given as the following
empty class definition:

class (Functor f, ∀ a. Monoid a => Algebra f a)
=> Foldable f where

by taking fold h = alg . fmap h Indeed, given a Fold-
able f , everyMonoidm carries an f -Algebra structure by
taking alg = fold id so, provided at least fmap id = id,
the above definition indeed characterises Foldables. Given
a true Functor instance, satisfying also fmap (f . g) =
fmap f . fmap g, we should then expect the following
naturality property of Foldables, viz.:

fold (h . f) = fold h . fmap f

We may note here in passing that none of the above makes
any use whatsoever of theMonoid class: that is, we could
generalise this result further to a defintion of Foldable
which is parametrised over any class qualifier Q . But doing
so would take us far outside the hereditary Harrop fragment.

3 On Ringads
After the preceding warmup, let us proceed directly to our
second characterisation:

class (Monad f, ∀ a. Algebra f a => Monoid a)
=> Ringad f where

The twist here is that we need to consider f -Algebra struc-
ture wrt f being aMonad instance, that is, the alg operation
should additionally satisfy:

(η) alg . return = id
(µ) alg . mult = alg . fmap alg

The main technical idea, already present in Gibbons’ beauti-
ful reconstruction [Gibbons 2016] of Wadler’s earlier ideas,
is to see how f -Algebra structure, in the presence of Mon-
adZero andMonadPlus, gives rise to Monoid structure:

instance (MonadZero f, MonadPlus f, Algebra f a) =>
Monoid a where
0 = alg zero
a ⊕ b = alg ((return a) `plus` (return b))

As Gibbons notes, it is an nice exercise to show that these
definitions do indeed give rise to Monoid structure, and
that, in particular, associatitivity of plus implies that of the
induced ⊕; similarly for 0 being a unit for ⊕ on the basis that
zero is for plus.
The other direction of the equivalence is (perhaps) even

easier: the distinguished (free) algebra structure mult ob-
tained from the Monad f , coupled with the constraint
∀ a. Algebra f a => Monoid a, directly yields the relevant
instances of MonadZero andMonadPlus.

4 Where’s the catch?
As pointed out by the anonymous referees, the issue of what
equations should be imposed on the various operations re-
mains unresolved by the definitions made here, as does the
detailed verification of the round-trip laws needed to witness
the identifications claimed here. This is future work!

5 Conclusions
Beyond being perhaps merely a cute ‘trick’, my interest in
this work was to try to understand, and hopefully explain,
two ‘difficult’ compound type classes in haskell in terms of
simpler compponents.While the Foldable type class is famil-
iar to all haskell programmers, it emerges as an evolutionary
abstraction within the simple system of class constraints
supported by haskell. By passing to the richer hereditary
Harrop fragment of such constraints, exploiting universal
quantification over implicational constraints, we have shown
how to characterise it completely, and indeed to show it that
it really has nothing to do with Monoid at all.

By contrast, Gibbons’ reinvestigation of Wadler’s Ringad
class, together with the already rich literature relating (SQL-
like) queries and monad comprehensions, has thrown up
a number of questions regarding the further, non-haskell-
expressible, constraints which should be imposed in order
to capture queries-as-comprehensions. By reducing Ringad
to its more lementary components, we hope to shed light on
future investigations in this area.

Acknowledgments
I am grateful to the members and observers of IFIP Working
Group 2.1 for their helpful feedback following a first presen-
tation of this work. Special thanks to Jeremy Gibbons for
some equational hand-holding. Any errors and misunder-
standings remain, of course, my own.

References
Roland Carl Backhouse andDiethardMichaelis. 2006. Exercises in Quantifier

Manipulation. In Mathematics of Program Construction, 8th International
Conference, MPC 2006, Kuressaare, Estonia, July 3-5, 2006, Proceedings (Lec-
ture Notes in Computer Science), Tarmo Uustalu (Ed.), Vol. 4014. Springer,
69–81.

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S. Oliveira,
and Philip Wadler. 2017. Quantified Class Constraints. In Haskell Sym-
posium, Oxford, September 2017, Proceedings.

Jeremy Gibbons. 2016. Comprehending Ringads - For Phil Wadler, on the
Occasion of his 60th Birthday. In A List of Successes That Can Change
the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday, Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella (Eds.), Vol. LNCS 9600. Springer, 132–151.

Torben Grust. 2015. A Compilation of Compliments For a Compelling
Companion: The Comprehension. In Mathematics of Program Construc-
tion, 12th International Conference, MPC 2015, Königswinter, Germany,
June 29-July 1, 2015, Proceedings, Ralf Hinze and Janis Voigtländer (Eds.),
Vol. LNCS 9129. Springer.

Tarmo Uustalu. 2016. A divertimento on MonadPlus and nondeterminism.
J. Log. Algebr. Meth. Program. 85, 5 (2016), 1086–1094.


	Abstract
	1 Introduction
	2 On Foldables
	3 On Ringads
	4 Where's the catch?
	5 Conclusions
	Acknowledgments
	References

