
Extended Abstract: Type-Directed Reasoning
for Probabilistic, Non-Compositional Resources

Christopher Schwaab
University St Andrews
cjs26@st-andrews.ac.uk

Edwin Brady
University St Andrews
ecb10@st-andrews.ac.uk

Kevin Hammond
University St Andrews
kh8@st-andrews.ac.uk

ACM Reference Format:
Christopher Schwaab, Edwin Brady, and Kevin Hammond.
2017. Extended Abstract: Type-Directed Reasoning for Prob-
abilistic, Non-Compositional Resources. In Proceedings of
Type-Driven Development, Oxford, United Kingdom, Sun. 3
Sep. 2017 (TyDE), 3 pages.

1 Introduction
Our overall research goal is to develop ways to system-
atically relate the non-functional properties of a pro-
gram, such as its time and energy usage, directly to
its source code. This will enable source-level reasoning
about important software properties, enabling them as
first-class citizens. Unfortunately, as processors and com-
piler optimizations continue to increase in complexity,
so modelling such properties is becoming increasingly
difficult. Even simple high-level language constructs can
be difficult to understand and may require a detailed un-
derstanding of the compilation process, ISA and micro-
architectural details such as cache, pipeline, memory
layout and memory buffers. To exemplify the problem,
consider a simple multiplication in C: 𝑦 = 𝑥 * 5. With
no optimization on an x86 machine, the compiler might
produce a simple imul instruction; however, an opti-
mised version might be lea rcx, [rax+rax*4]. This
may change
which hardware components are used, and so have

an impact on execution time, energy usage and other
properties.

In this paper, we propose to use a type-directed, statis-
tical approach. We aim to mitigate error by developing
a mechanism for mechanically reasoning about both the
accuracy and the confidence of a probabilistic cost (time,

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

TyDE, Sun. 3 Sep. 2017, Oxford, United Kingdom

© 2017 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

energy etc.). In our approach, individual program ex-
pressions are assigned a probabilistic cost. These are
composed in a way that follows the underlying program
shape. Intuitively, a term’s shape can be taken by drop-
ping its arguments; the shape of an entire expression
shape is then given as the normalized, flattened tree of
term shapes. Individual expressions are costed by an
opaque heuristic, ℎ⋆, that is determined by observing
many expressions of the same shape in different execu-
tion contexts and measuring their effects. The resource
consumption of a term in each shape is assumed to
be sub-gaussian following some underlying distribution.
This assumption is key to the possibility of reasoning
about potential error, admitting the application of well
established bounds. The main contributions of the full
paper will be to develop:

1. a type-directed, probabilistic approach to resource
analysis (for time, energy etc.), relying on a single,
calculated distribution; and

2. mechanisms for mechanically reasoning about er-
ror.

2 Cost typed expressions
We use a simple language of expressions with conditionals
and down to loops. So, e.g. the factorial function is:

for
𝑠 = 1

𝑖 = 𝑛
to 0. 𝑠← 𝑛 * 𝑠

To understand the time/energy usage of factorial n, we
ideally need to know:

1. the cost of testing to exit the loop when 𝑛 is 0;
2. the cost of the multiplication; and
3. the overhead of performing the loop.

In the style of Hume [1], our language is broken into two
layers: expressions whose terms are costed atomically by
a heuristic ℎ⋆, and a coordination layer of statements
which are costed semi-structurally. Statement costs are
not entirely structural because the system must account
for the extra cost of machine level control flow. As an
example, the rule for the cost of a loop is the cost of the
loop body and the conditional jump, times the number
of iterations—which is assumed to be statically known

TyDE, Sun. 3 Sep. 2017, Oxford, United Kingdom Christopher Schwaab, Edwin Brady, and Kevin Hammond

CLoop
𝐶0 ∼ ℎ⋆(𝜑(for)) J𝑛K = 𝑢 𝜎 ⊢ 𝑠 :ℎ

⋆

𝐶

𝜎 ⊢ for
𝑤 = 𝑤0

𝑖 = 𝑛
to 0. 𝑤 ← 𝑠 :ℎ

⋆

𝑢(𝐶0 + 𝐶)

Here, the environment 𝜎 is a mapping from free names,
such as functions, to program terms. The heuristic ℎ⋆

gives an estimate of the running time consumed by the
loop’s control flow. More generally this function costs
any expression 𝑒 by ℎ⋆(𝜑(𝑒))—where the function 𝜑 de-
composes 𝑒 into its normalized, flattened shape tree.
Where does this estimating function come from? As-
suming that the true cost of an expression is drawn
from some underlying distribution, ℎ⋆ can be calculated
by observing a large number of representative training
samples. However, because ℎ⋆ is only an estimate, a
means of reasoning about its error is required. This is
accomplished by extending the costing rules on 𝐶 with
accuracy, 𝜖, and confidence, 𝜌, written 𝑠 : 𝐶 ·∪ 𝜖, 𝜌. The
CLoop rule is then readily extended:

HLoop

𝐶0 ∼ ℎ⋆(𝜑(for))
J𝑛K = 𝑢− 1 𝜎 ⊢ 𝑠 : 𝐶 ·∪ 𝜖

𝑢 ,
𝑢
√
𝜌

𝜎 ⊢ for
𝑤 = 𝑤0

𝑖 = 𝑛
to 0. 𝑤 ← 𝑠 : 𝑢(𝐶0 + 𝐶) ·∪ 𝜖, 𝜌

Intuitively the for statement has some finite amount of
top-level confidence and accuracy which are split evenly
across the executions of its body 𝑠 and the overhead of
the conditional branch.

3 Soundness
We would like to derive a general type soundness the-
orem to guarantee that the cost is “reasonably close”
to some expected value. Intuitively, the compiled ma-
chine code representation 𝑚 of a well-typed statement
𝜎 ⊢ 𝑠 : 𝐶 ·∪ 𝜖, 𝜌 should generally have running time close
to 𝐶. Given that the underlying execution time follows
a distribution 𝐷, we can interpret “generally” to mean
the expected running time of 𝑚, E[𝑇]
As a machine model 𝑀 we use a simple SSA lan-

guage with infinite registers where each instruction has
probabilistic cost. Program execution is modeled with
a small-step operational semantics − ⇝ −. The step
relation takes a triple of current time 𝑇 , environment 𝜎,
and program 𝑚 to some approximate future time 𝑇 +𝐾,
an updated environment 𝜎′, and a program continuation
𝑚′. Programs in 𝑆 are transformed to machine code by
a standard CPS compiler with value domain 𝒱

compile : 𝑆𝜏 → (𝒱𝜏 →𝑀𝛼)→𝑀𝛼.

Given a model of a machine, the soundness theorem
ensures that the cost of a program, 𝑝, is within 𝜖 of the
actual cost of the underlying machine code, 𝑚.

Theorem 3.1 (Type soundness).

∀(𝜎 : Env)(𝑠 : 𝑆𝜏)(𝜖, 𝜌 : R).𝜎 ⊢ 𝑠 : 𝐶 ·∪ 𝜖, 𝜌 ∧
∀(𝑃 : 𝑀𝜏 → ⋆)(𝑘 : 𝒱 →𝑀𝜏)(∀(𝑣 : 𝒱).𝑃 (𝑘 𝑣))⇒
∃(𝑚 : 𝑀𝜏).compile 𝑠 𝑘 = 𝑚 ∧

(∃(𝑣 : 𝒱) 𝑇.0, 𝜎,𝑚⇝⋆ 𝑇, 𝜎′, ret 𝑣) ∧
𝑃 (|𝐶 − E[𝑇]| ≥ 𝜖) ≤ 𝜌)

(1)

This states that given a program 𝑠 with cost 𝐶, accuracy
𝜖, and confidence 𝜌, and supposing that 𝑠 compiles to
𝑚, then our system guarantees, with 𝜌 confidence, that
the estimated cost, 𝐶, will never be greater than 𝜖 steps
away from the expected cost of the compiled program.

4 Example: Costs for factorial
Given the soundness theorem, it is easy to analyse the
accuracy of the costs for the factorial of 𝑛 = 2.

𝐶 ∼ ℎ⋆(𝜑(2 * 𝑠) = {MUL})
𝜎 ⊢ 2 * 𝑠 : 𝐶 ·∪ 1

3𝜖,
3
√
𝜌

𝐶0 ∼ ℎ⋆(𝜑(for))

𝜎 ⊢ for
𝑠 = 1

𝑖 = 2
to 0. 𝑠← 2 * 𝑠 : 𝑢(𝐶0 + 𝐶) ·∪ 𝜖, 𝜌

The leaves of the typing derivation tell us what accuracy
and confidence are required of ℎ⋆. To solve for ℎ⋆ pro-
grams are generated and their expressions costs observed
in a variety of contexts. Finally, Hoeffding’s inequality
can guarantee the accuracy and confidence of ℎ⋆ given
sufficient training samples.

5 Conclusion
We have sketched how to determine probabilistic pro-
gram execution costs, in terms of time, energy etc. from
a source level program, using a type-based approach
derived from base term costs, and building on known
results from machine learning. We have stated the key
soundness result that is required. We have illustrated
the use of our approach using a simple factorial function.
Clearly, it is necessary to complete this proof and to
determine the best way to calculate ℎ⋆ for more complex
examples. There are then several avenues that would re-
pay further investigation. These include: Loop Bounds.
Currently, we only handle loops with a fixed iteration
count. There is a large body of work in e.g. the worst-
case execution time community on determining more
complex loop bounds [4, 5]. Effects. To cost basic ef-
fects we simply need to know the cost and the error.
However, we would need e.g. a dependent type system if
the overall cost depended on the value of the effect (e.g.
if a loop bound depended on the value of some variable).
Higher order functions and Lazy Evaluation. We
can exploit similar approaches to those taken by Jost et
al. [2, 3] for amortised analysis, to embed costs within
our types and track these across composed expressions.

Extended Abstract: Type-Directed Reasoning
for Probabilistic, Non-Compositional Resources TyDE, Sun. 3 Sep. 2017, Oxford, United Kingdom

References
[1] Kevin Hammond. 2000. Hume: a Concurrent Language with

Bounded Time and Space Behaviour. In Proc. 7th IEEE Inter-
national Conference on Electronic Control Systems (ICECS

2K), Lebanon. 407–411.

[2] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Mar-
tin Hofmann. 2010. Static Determination of Quantitative Re-

source Usage for Higher-order Programs. In Proceedings of the

37th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’10). ACM, New York,

NY, USA, 223–236. https://doi.org/10.1145/1706299.1706327
[3] Steffen Jost, Pedro Vasconcelos, Mário Florido, and Kevin

Hammond. 2017. Type-Based Cost Analysis for Lazy Func-

tional Languages. J. Autom. Reason. 59, 1 (June 2017),
87–120. https://doi.org/10.1007/s10817-016-9398-9

[4] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. 2012.

Symbolic Loop Bound Computation for WCET Analysis.
Springer Berlin Heidelberg, Berlin, Heidelberg, 227–242. https:
//doi.org/10.1007/978-3-642-29709-0 20

[5] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,
Niklas Holsti, Stephan Thesing, David Whalley, Guillem
Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika

Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan
Staschulat, and Per Stenström. 2008. The Worst-case
Execution-time Problem&Mdash;Overview of Methods and
Survey of Tools. ACM Trans. Embed. Comput. Syst. 7, 3,

Article 36 (May 2008), 53 pages. https://doi.org/10.1145/
1347375.1347389

https://doi.org/10.1145/1706299.1706327
https://doi.org/10.1007/s10817-016-9398-9
https://doi.org/10.1007/978-3-642-29709-0_20
https://doi.org/10.1007/978-3-642-29709-0_20
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389

	1 Introduction
	2 Cost typed expressions
	3 Soundness
	4 Example: Costs for factorial
	5 Conclusion
	References

