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1 Introduction
Feature engineering is the preprocess of training and serv-

ing machine learning models. Programmers formalize their

domain knowledge into data operations that convert raw

data to proper model inputs. Features are usually written

in languages of the Sql-family, which includes F3 (Facebook

Feature Framework, first introduced by Chung and Yang [5]),

a compiler developed at Meta.

During the development of F3, we have found that a com-

piler for feature engineering may benefit from dependent

type theory [10] and its implementation techniques. Here,

we demonstrate the type system of F3, and its practical ap-

plications in daily feature engineering.

2 The F3 Language
An F3 feature describes a data processing flow, using a di-

rected acyclic graph. Nodes of a graph are operators. Opera-
tors are the built-in functions that are commonly seen in the

Sql languages. Figure 1 shows a few operators as examples.

An operator may contain some expressions to complete the

missing expressiveness. F3 programmers usually implement

expression-level functions in a different, more performant

language and then import these implementations as function

symbols in F3 expressions.

Expressions can be formalized by ordinary lambda terms [6].

Since our goal is to illustrate how dependent types improve

a Sql compiler, here we focus on operators (the crux of a Sql

language) and omit the discussions of expressions (lambda

calculus has been better studied).

Figure 2 is an F3 feature. It reads a table from a database.

Each row of this table contains one column: an integer x. The
rest of the operators are self-explanatory except for the Left-
Join that creates 𝑡4. The result of a LeftJoin(𝑡𝑙𝑒 𝑓 𝑡 , 𝑡𝑟𝑖𝑔ℎ𝑡 , 𝑘)
contains all columns in 𝑡𝑙𝑒 𝑓 𝑡 ; it also contains the columns in

𝑡𝑟𝑖𝑔ℎ𝑡 that pass the condition 𝑘 .

Another feature may describe the same computation, as in

Figure 3. Since the left parent has all its columns preserved,

the computation is the same, if we move the Filter below
the LeftJoin.

F3 compiler has a critical mission: to detect such semantic

equivalence that underlies different ways of using these Sql

operators. Sometimes, the compiler restructures a feature by

𝑝 ::= 𝑙𝑒𝑡𝑜 features

| 𝑙𝑒𝑡𝑜 , 𝑝

𝑜 ::= Read(table) read from database

| Add(𝑡, 𝑙𝑒𝑡𝑒 ) create a new column

| Select(𝑡, 𝑙𝑒𝑡𝑒 ) non-preserving Add
| Filter(𝑡, 𝑒) remove some rows

| LeftJoin(𝑡0, 𝑡1, 𝑒) left join

| RightJoin(𝑡0, 𝑡1, 𝑒) right join

| 𝑡 tables

𝑒, 𝑘 ::= 𝑥 columns (variables)

| 𝑓 (𝑒) application

𝑙𝑒𝑡𝑜 ::= 𝑡 = 𝑜 bind a table

𝑙𝑒𝑡𝑒 ::= 𝑥 = 𝑒 bind a variable

𝑡, 𝑡0, 𝑡1 table names

𝑥,𝑦, 𝑧 variable names

𝑓 , 𝑔 function symbols

Figure 1. Grammar of F3 features

𝑡0 = Read({𝑥 : 𝑖𝑛𝑡}) 𝑡0 is ({x=42}, {x=5})

𝑡1 = Add(𝑡0, 𝑦 = 𝑑𝑜𝑢𝑏𝑙𝑒 (𝑥)) 𝑡1 is ({x=42, y=84}, {x=5, y=10})

𝑡2 = Filter(𝑡1, 𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(𝑦, 20)) 𝑡2 is ({x=5, y=10})

𝑡3 = Select(𝑡0, 𝑧 = 𝑥) 𝑡3 is ({z=42}, {z=5})

𝑡4 = LeftJoin(𝑡2, 𝑡3, 𝑥 ?

=𝑧) 𝑡4 is ({x=5, y=10, z=5})

Figure 2. F3 example 1

𝑡0 = Read({𝑥 : 𝑖𝑛𝑡}) 𝑡0 is ({x=42}, {x=5})

𝑡1 = Add(𝑡0, 𝑦 = 𝑑𝑜𝑢𝑏𝑙𝑒 (𝑥)) 𝑡1 is ({x=42, y=84}, {x=5, y=10})

𝑡2 = Select(𝑡0, 𝑧 = 𝑥) 𝑡2 is ({z=42}, {z=5})

𝑡3 = LeftJoin(𝑡1, 𝑡2, 𝑥 ?

=𝑧) 𝑡3 is ({x=5, y=10, z=5},

{x=42, y=84, z=42})

𝑡4 = Filter(𝑡3, 𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(𝑦, 20)) 𝑡4 is ({x=5, y=10, z=5})

Figure 3. F3 example 2

moving operators around to optimize runtime performance–

we need to validate if such a restructure is semantic preserv-

ing. Sometimes, the compiler needs to prevent a programmer

from deploying a new feature, if an existing feature of the

same semantics is detected, to save resources.
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𝑆 ::= <𝜏 ;𝜅; 𝜌> Schemata

𝜏 ::= 𝜖 | 𝑥 : 𝑇, 𝜏 DataTypes

𝜅 ::= 𝜖 | 𝑒, 𝜅 NormConds

𝜌 ::= 𝜖 | 𝑥 = 𝑒, 𝜌 NormVars

𝑇 ::= 𝑖𝑛𝑡 | 𝑓 𝑙𝑜𝑎𝑡 | 𝑏𝑜𝑜𝑙 | 𝑆 | ... types

⟦𝑒⟧𝜌 ⇒ 𝑒

⟦𝑥⟧𝜌 ⇒ 𝜌 (𝑥)
⟦𝑓 (𝑥)⟧𝜌 ⇒ ⟦𝑓 ⟧𝜌 (⟦𝑥⟧𝜌 )

Figure 4. Grammar of F3 types and NbE rules

3 The F3 Type System
We now introduce our solution to validate semantic equiva-

lence: dependent types.

3.1 Types for tables
As in Figure 4, each table is of type Schema, a three-tuple
that captures

• DataTypes that map column names to their types,

• NormConds that collect all normalized conditions (such

as a Filter node and a join condition), and

• NormVars that map columns names to the computa-

tions (in their normal forms) that create them.

3.2 NbE for expressions
NbE is a technique to find the normal forms of programs (dis-

cussed by Abel et al. [1]). It usually runs a special interpreter

that reduces syntactic forms to some internal forms. E.g. Ex-
pression(40 + 2) and Expression(double(21)) are both
reduced to Value(42). It then runs a reifier to read internal

forms back to syntactic forms, e.g., Expressions(42).
Most NbE algorithms resolve 𝛼𝛽𝜂-equivalence (described

by Barendregt [3]) for general purpose programming lan-

guages. For F3’s case, we focus only on 𝛽 , which is about

computing the NormVars of columns. Our algorithm is rather

straightforward, as in Figure 4. Since operators do not involve

any binders (and thus no closures), there is no substantial dif-

ference between the syntactic forms and the internal forms.

So, we omit the grammar for Values.

3.3 Inference for operators
F3 uses a typical bi-directional type checker, as shown by

Pierce and Turner [11]. For a program, the type system

chooses between type synthesis (generating a type) and type

check (validating a user annotation). The choice depends

on whether the program is a constructor or an eliminator

(described by Dybjer [7]). All F3 operators take forms of

function applications (thusly eliminators), which synthesis

applies to.

Figure 5 sketches the type inference rules for operators.

We write a judgment form for synthesizing a type for an

operator as ⊢ 𝑜 :< 𝜏 ;𝜅; 𝜌 >. (In a more conventional pre-

sentation of bi-directional rules, a synthesis judgement may

look like 𝑒 ⇒ 𝑡 , while a check judgement is 𝑒 ⇐ 𝑡 . Since this

paper does not include any check judgements, we omit this

difference.) On operator level, the inference context comes

from the parents operators. So, their judgment forms do not

contain any explicit inference contexts. On expression level,

we write a judgment form for synthesizing a type for an

expressions as 𝜏 ⊢ 𝑒 : 𝑇 .

• A Read operator refers to a physical table in a database.
The table contains a mapping from column names

to column data types, 𝜏 . The resultant type of Read

includes (1) 𝜏 , (2) an empty set of conditions, and (3)

NormVars that are initialized from 𝜏 . 𝜏2𝜌 denotes a

function: it creates a mapping from columns names to

constant symbols for the physical table. For example,

Read({𝑥 : 𝑖𝑛𝑡}): its type is < 𝑥 : 𝑖𝑛𝑡 ; 𝜖;𝑥 = 𝑡0.𝑥 >,

where 𝑡0.𝑥 is a constant symbol, assuming the physical

table is named 𝑡0.

• Filter extends 𝜅 of its parent node with the normal-

ized condition, and preserves 𝜏 and 𝜌 from its parent.

• Add and Select are similar. They synthesize the types

of their parents and the new columns. Then, the Add
operator preserves the DataTypes and NormVars from

its parent, while the Select operator discards them. In

practice, both operators are variable-arity functions.

• LeftJoin combines its two parents. The resultant 𝜏

is a union between its parents’ 𝜏s, assuming no nam-

ing conflicts. The join condition, 𝑘 , is normalized and

added to the union of its parents’ 𝜅s. The most inter-

esting change, however, is in the NormVars.

In 𝜌0⊎ 𝑗𝑜𝑖𝑛(𝜌1), 𝑗𝑜𝑖𝑛 is a function that converts 𝜌1 to a new
mapping. The newmapping preserves all left-hand sides of 𝜌1
and wraps all right-hand sides of 𝜌1 in a function application,

indicating that a join operator has changed the computation

of these columns. For the example in Figure 2, the NormVar

of 𝑡2 is {𝑥 = 𝑡0 .𝑥,𝑦 = 𝑑𝑜𝑢𝑏𝑙𝑒 (𝑡0.𝑥)}, the NormVar of 𝑡3 is

{𝑧 = 𝑡0 .𝑥}, the resultant NormVar of 𝑡4 is {𝑥 = 𝑡0 .𝑥,𝑦 =

𝑑𝑜𝑢𝑏𝑙𝑒 (𝑡0 .𝑥), 𝑧 = 𝑗𝑜𝑖𝑛(𝑡0.𝑥)}

4 Applications In Feature Engineering
Here we discuss how the dependent type system enhances

F3 compiler.

4.1 Semantic sameness
As shown in Figure 2 and Figure 3, F3 compiler needs to

identify meanings among seemingly-different features. With

dependent types, the problem of identifying semantic equiva-

lence is reduced to the problem of checking structural equiv-

alence between the results of type synthesis.
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⊢ 𝑜 :< 𝜏 ;𝜅; 𝜌 >

Read

⊢ Read(𝜏) :< 𝜏 ; 𝜖 ;𝜏2𝜌 (𝜏) >
Filter

⊢ 𝑡 :< 𝜏 ;𝜅; 𝜌 > 𝜏 ⊢ 𝑘 : 𝑏𝑜𝑜𝑙

⊢ Filter(𝑡, 𝑘) :< 𝜏 ; ⟦𝑘⟧𝜌 , 𝜅; 𝜌 >

Add

⊢ 𝑡 :< 𝜏 ;𝜅; 𝜌 > 𝜏 ⊢ 𝑒 : 𝑇
⊢ Add(𝑡, 𝑥 = 𝑒) :< 𝑥 : 𝑇, 𝜏 ;𝜅;𝑥 = ⟦𝑒⟧𝜌 , 𝜌 >

Select

⊢ 𝑡 :< 𝜏 ;𝜅; 𝜌 > 𝜏 ⊢ 𝑒 : 𝑇
⊢ Select(𝑡, 𝑥 = 𝑒) :< 𝑥 : 𝑇 ;𝜅;𝑥 = ⟦𝑒⟧𝜌 >

LeftJoin

⊢ 𝑡0 :< 𝜏0;𝜅0; 𝜌0 > ⊢ 𝑡1 :< 𝜏1;𝜅1; 𝜌1 > 𝜏0 ⊎ 𝜏1 ⊢ 𝑘 : 𝑏𝑜𝑜𝑙

⊢ LeftJoin(𝑡0, 𝑡1, 𝑘) :< 𝜏0 ⊎ 𝜏1; ⟦𝑘⟧𝜌0⊎𝜌1 , (𝜅0 ⊎ 𝜅1); 𝜌0 ⊎ 𝑗𝑜𝑖𝑛(𝜌1) >

RightJoin

⊢ 𝑡0 :< 𝜏0;𝜅0; 𝜌0 > ⊢ 𝑡1 :< 𝜏1;𝜅1; 𝜌1 > 𝜏0 ⊎ 𝜏1 ⊢ 𝑘 : 𝑏𝑜𝑜𝑙

⊢ RightJoin(𝑡0, 𝑡1, 𝑘) :< 𝜏0 ⊎ 𝜏1; ⟦𝑘⟧𝜌0⊎𝜌1 , (𝜅0 ⊎ 𝜅1); 𝑗𝑜𝑖𝑛(𝜌0) ⊎ 𝜌1 >

Figure 5. Inference rules for operators

In our example, both features have type

< {𝑥 : 𝑖𝑛𝑡,𝑦 : 𝑖𝑛𝑡, 𝑧 : 𝑖𝑛𝑡};
{𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(𝑑𝑜𝑢𝑏𝑙𝑒 (𝑡0 .𝑥), 20)};
{𝑥 = 𝑡0.𝑥,𝑦 = 𝑑𝑜𝑢𝑏𝑙𝑒 (𝑡0 .𝑥), 𝑧 = 𝑗𝑜𝑖𝑛(𝑡0.𝑥)} > .

If we replace the LeftJoins with RightJoins in both

examples, then these two features no longer share the same

computation, since the Filter information of the left parent

is now lost. Our type checker is able to detect this–the two

features now have different types.

Figure 2 now has

< {𝑥 : 𝑖𝑛𝑡,𝑦 : 𝑖𝑛𝑡, 𝑧 : 𝑖𝑛𝑡};
{𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(double(t0.x), 20)};
{𝑥 = 𝑗𝑜𝑖𝑛(𝑡0.𝑥), 𝑦 = 𝑗𝑜𝑖𝑛(𝑑𝑜𝑢𝑏𝑙𝑒 (𝑡0 .𝑥)), 𝑧 = 𝑡0 .𝑥} >;

Figure 3, instead, has

< {𝑥 : 𝑖𝑛𝑡,𝑦 : 𝑖𝑛𝑡, 𝑧 : 𝑖𝑛𝑡};
{𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(join(double(t0.x)), 20)};
{𝑥 = 𝑗𝑜𝑖𝑛(𝑡0 .𝑥), 𝑦 = 𝑗𝑜𝑖𝑛(𝑑𝑜𝑢𝑏𝑙𝑒 (𝑡0.𝑥)), 𝑧 = 𝑡0.𝑥} > .

NormVars may be impacted by other operators, such as

Union and GroupBy. Their inference rules are similar to

LeftJoin and RightJoin–wrapping existingNormVarswithin

dummy function symbols.

In practice, for the comparison of 𝜌s, we ignore the vari-

ables that occur in 𝜌 but not in 𝜏 . They are intermediate

computations and do not make any difference in the result

(assuming no side-effects).

4.2 Privacy enforcement
Not all features can eventually be used in production. Dif-

ferent countries have introduced various legislation on data

protection. If a feature contains sensitive columns in its re-

sult, then the feature must not be deployed.

The schema NormVars help with such validations. In the

future, if one is to detect whether the result of a feature is

computed from data that is not policy-compliant, then one

may scan the resultant schema of this feature, which con-

tains the normal forms that may trace back to the sensitive

columns of the original table.

4.3 Test generation
F3 compiler is accompanied with thousands of unit tests.

To validate a compiler transformation, it is time consuming

and error-prone to manually create complex features as test

inputs. These tests are also difficult to maintain: we have

noticed that one change often breaks test cases in other

irrelevant compiler rules, due to their hard coded test cases.

Dybjer et al. [8] show that dependent types can be used

to generate comprehensive test cases. With such a test gen-

erator, we may significantly improve the productivity of

compiler developers, by property tests. In a nutshell, gen-

erating test cases is just the opposite of normalization. The

inference rules in Figure 5 can be used to generate features,

if programmers specify their schemata.

5 Related Work
Dependent types have been introduced to Sql-languages to

improve authoring experience, such as detecting bugs earlier

and requiring fewer type casts. As examples, (1) Chlipala

[4]’s Ur is a metaprogramming tool for web applications that

builds and runs data queries, (2) Kazerounian et al. [9] have

introduced CompRDL for Ruby libraries.

On the other hand, Baltopoulos et al. [2] is motivated

similarly as we do: use types as a proxy to help the compiler

with semantics understanding. One of their application is to

check database integrity.
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