
Types as First-Class Values in Fuzion
Extended Abstract

Fridtjof Siebert
siebert@tokiwa.software
Tokiwa Software GmbH
Karlsruhe, Germany

Abstract
Using types as compile-time values provides possibilities for
abstraction beyond what standard parametric types can offer.
This extended abstract explains how the Fuzion language
unifies the handling of type arguments and value arguments
in calls and how types can be equipped with callable fea-
tures. Furthermore, the use of types to distinguish multiple
instances of algebraic effects is shown.

CCS Concepts: • Software and its engineering→ Data
types and structures; Polymorphism.

Keywords: Languages, Types, Algebraic Effects

1 Introduction
The goal of the Fuzion project [2, 3] is to provide an indus-
trial strength general purpose high-level language with a
particular focus on safety-critical applications and their val-
idation and verification. For this, the language is designed
to be simple and safe, but also to provide powerful high-
level abstractions and a simple intermediate representation
enabling tools for automatic code analysis and creation of
certification artifacts such as tests or correctness proofs.
Fuzion combines functional and object-oriented aspects

by unifying elements from both paradigms into the concept
of a Fuzion feature. In particular, a feature in Fuzion can
take the role of what is called a class, interface, package,
trait, method, member, field, argument, generic, function,
lambda, routine, tagged union, enum, type class, etc. in other
languages.

Fuzion supports two forms of polymorphism: parametric
polymorphism using monomorphization for efficient code
generation and object-oriented style reference types with
inheritance and dynamic dispatch at runtime.
Any feature in a Fuzion program is of one of five kinds:

routine, abstract, field, type parameter or choice. A routines
can be either a constructor that create a new instance when
called or a function that returns a value of an arbitrary type.
Features define algebraic types: constructors define product
types while choices define tagged sum types. A feature de-
clared as a constructor or as a choice type hence implicitly
declares a type with the same name.
Features can be nested, i.e., routines and choice features

may contain nested inner features. Abstracts provide no
code, they cannot be called, but they provide a template

for inheritance. Routines and abstracts may have formal
arguments which are inner features of kinds field or type
parameter. On a call, actual values and types are assigned to
formal arguments.

Constructors may inherit from other constructor features,
i.e., inherit the parent’s inner features. Inherited functions
can be redefined, inherited abstract features can be imple-
mented by inner features of the heir feature. A constructor
with abstract inner features can take the role of a Haskell
type class: features inheriting from it that implement the
abstract inner features can be used like instance of that type
class.

Fuzion is statically typed, but it uses extensive type infer-
ence to avoid the need of explicit types. Unlike languages
in the ML tradition, type inference does not start with func-
tions to infer the types of actual arguments in a call. Instead,
constructors define a type and call to a constructor creates
a value of that type. As in most object-oriented languages,
calls are for the form t.f a1 a2, where the function f that is
called must be declared as an inner feature of the constructor
that defines t’s type. Function result types can be omitted
and inferred from the result expression, while feature argu-
ment types in many cases can be inferred from the actual
arguments in a call1.

Fuzion features are pure, non-functional aspects are encap-
sulated in algebraic effects using handlers [8, 9]. Effects are
features that inherit from the base library feature effect.
Effects provide operations as inner features that may en-
capsulate non-pure behavior. These operations, when called,
may either resume or abort. An effect must be installed while
code using its operations is executed. Installed effects form
a stack for each running thread.

Fuzion features can be grouped into a Fuzion module that
can be stored as a module file. The module forms the basis
for tools processing library code.

Fuzion applications are created from a set of Fuzion mod-
ules. These modules are converted into the Fuzion interme-
diate representation that is used by the back end to create
target code. The intermediate representation is also the basis
for whole-program static analysis tools to work with.

In the following sections, it will be explained how Fuzion
uses types to solve two important issues: First, parametric

1An example for where this is not possible is a library feature that is not
called within the library itself needs to declare the argument types

https://orcid.org/0003-1674-2976

Fridtjof Siebert

types in object-oriented languages typically can only define
functions that require an instance of that type to be called
on, while it is often desirable to have functions that do not
require such an instance. Fuzion provides a solution to this
by associating features to types. Second, the use of several
handler instances of an algebraic effect requires some naming
mechanism to distinguish these instances. It will be explained
how Fuzion uses types to this end.

2 Types as Values
Fuzion features can have type parameters very similar to
generics supported by many languages[4]. However, the
syntax for the declaration of type parameters is essentially
the same as that of value arguments. As an example, the
following code shows the definition of a Fuzion feature pair
that contains two values of the same type.
a pair of two values a, b of the same type T
pair(T type,

a, b T)
is

redef as_string =>
"pair of type $T: $a, $b"

Type parameters can be used as targets of a call, in this
example, the feature as_string is called to create a text
representation of type parameters T and value arguments a
and b2. Type parameters can be assigned to fields and used to
define new types that, e.g, may be passed as type parameters
in calls.

pair is a constructor, i.e., it defines a type with the same
name, pair. On a call, it creates one instance of that type. The
following code creates three instances assigning different
types and values to the formal arguments:
p1 := pair i32 47 11
p2 := pair String "Hello" "World!"
p3 := pair (option String) nil "xyz"

Actual values for type parameters can be inferred, so the
code for p1 and p2 can be simplified as:

p1 := pair 47 11
p2 := pair "Hello" "World!"

In contrast, the arguments to the third call to pair are of
types nil and String which are not compatible with one
another and different to desired choice type option String.
Consequently, that type cannot be inferred automatically, an
attempt to use type inference would result in a compile-time
error.
When a constructor or choice name is used as a type,

actual type parameters are required and value arguments
are omitted. An example is the following code that uses

2Within a string literal, v is short-hand for inserting the result of the call
v.as_string at the given position.

types pair i32 and pair (option String) as types for
the formal argument p.

add the elements in a pair of i32 values
add(p pair i32) => p.a + p.b

from pair of option String, get `a` as String
first_string(p pair (option String)) =>

`option String` is a choice of `nil` or
`String`, pattern match it
match p.a

nil => "**error**"
s String => s

3 Type Features
Every Fuzion constructor feature f defines a type t. Values
created by the constructor f can be assigned to argument
fields of that type t in a call. Similarly, the type t can be
assigned to type parameters arguments in a call.
The type of this type value t is defined implicitly: Every

constructor feature f implicitly declares a type feature 𝑓𝑡 .
Values of 𝑓𝑡 correspond to types and are assigned to type
parameters in calls.

Type features can define inner features that can be called
via a given type parameter.

An example from Fuzion’s base library is numeric that
defines abstract features like infix +. numeric is used as the
parent of concrete numeric types i32, f64 or fraction (Fig-
ure 1). numeric defines zero and one as inner functions of
numeric’s type feature:

numeric is
. . .
type.zero numeric.this is abstract
type.one numeric.this is abstract

Just like many other features of numeric, these type fea-
tures are abstract and have to be implemented for each con-
crete feature that inherits from numeric. For this to be pos-
sible, the type features form an inheritance graph parallel to
the inheritance graph of the underlying features.
Note that the result type for zero and one is numeric

.this, which is a placeholder for the actual heir type that
implements these type features.

numeric
prefix + numeric.this is abstract
prefix – numeric.this is abstract

numeric.type
zero numeric.this is abstract
one numeric.this is abstract
sum : Monoid numeric.this is
 …
product : Monoid numeric.this is
 …

i32
prefix + i32 is i32.this
prefix – i32 is instrinsic

i32.type
zero i31 is 0
one i32 is 1

Figure 1. Partial inheritance graph for numeric and the corre-
sponding type feature.

Types as First-Class Values in Fuzion

A feature such as i32 that inherits from numeric can
provide implementations of these type features as follows.

i32 : numeric is
. . .
fixed type.zero i32 is 0
fixed type.one i32 is 1.

These features are marked as fixed to prevent passing
this implementation down to heirs of i32. Those heirs would
have to provide their own implementation with correspond-
ing result type.

We can call these type features in generic code. Here is an
example of a function that calculates the sum of the elements
of a list of any numeric type:

sum(T type : numeric, l list T) =>
match l

nil => T.zero
c Cons => c.head + sum c.tail

In case the list is empty, the value returned by the actual
numeric type’s zero feature will be returned as the result
of sum. This mechanism is used in Fuzion’s base library to
provide monoids sum and product for all numeric types
using one and zero defined for numeric.type to implement
the identity element e:

numeric is
. . .
monoid of numeric with infix + operation.
type.sum : Monoid numeric.this is

associative operation
infix • (a, b numeric.this) => a + b

identity element
e => zero

monoid of numeric with infix * operation.
type.product : Monoid numeric.this is

infix • (a, b numeric.this) => a * b
e => one

4 Types to Identify Effects
Fuzion uses algebraic effects to support non-functional as-
pects such as I/O,mutable data, aborting operations by throw-
ing exceptions, etc. Effects can be seen as capabilities that are
required to execute code that requires the presence of a given
effect in the current execution environment. This is similar to
the Effekt language that regards effects as requirements[10].
For convenience, common effects in Fuzion such as io.out
have default handlers that are installed automatically for
programs that do not install a required handler explicitly.
An effect is essentially a set of operations encapsulated

in a feature. The type of that feature is used to identify the

effect. E.g., a simple example is the following Hello World
code using the io.out effect:

hello ! io.out is
io.out.env.println "Hello World"

The feature hello requires the io.out effect to be exe-
cuted. This is documented using ! io.out following the fea-
ture name, where the effect is identified by its type io.out.
Within the feature implementation, the current effect in-

stance can be accessed using the effect type followed by .env
as in io.out.env.println in this example.
Fuzion permits installation of different handlers for an

effect of a given type. E.g., we could install a handler for
io.out that, instead of using stdout, would print to a log
file. If hellowas called with that handle installed, the access
io.out.env would divert the output to the log file. The
installed handlers form a stack, such that there is at most
one current handler for each effect type.
Often, we might not only want to choose a particular

handler for an effect, but we would like to work with several
instances derived from the same effect simultaneously. So
we need a mechanism to distinguish these. Fuzion uses types
to do this as follows:

4.1 Using types to distinguish effect instances
Assume we want to implement a function that traverses a
list and, as a side-effect, counts the number of even values
found in the list. We could do this using a mutable variable
as follows.

count_even(l Sequence i32) i32 ! mutate is
res := mutate.env.new 0
l.for_each (

x -> if x %% 2 then res <- res.get + 1)
res.get

Here, we use the mutate effect in the current environ-
ment to create a new mutable field res. This works, but
unfortunately, this feature requires the mutate effect even
though it does not perform any state changes to the system,
all it does is using an auxiliary mutable variable res that is
discarded when this function returns, the mutation is fully
encapsulated in an otherwise pure function.

It would help if we were able to define a local instance of
mutate that would permit us to create a mutable auxiliary
variable but that would also document that this feature is
effectively pure.

We can do this by defining a new type local_mutate that
inherits from mutate, execute our code using this variant
of the mutate effect and create auxiliary mutable variables
locally using this effect.

Fridtjof Siebert

The following code illustrates how this can be done:

count_even(l Sequence i32) i32 is
local_mutate : mutate.
local_mutate.go ()->

res := local_mutate.env.new 0
l.for_each (

x -> if x %% 2 then res <- res.get + 1)
res.get

The line local_mutate : mutate. defines a constructor
feature that inherits from mutate. Since constructor fea-
tures implicitly define a type, this defines the new type
local_mutate that inherits all the operations from the mutate
effect. One instance of this new effect is then installed. This
instance is accessed via its type local_mutate.env, it is
used to create and update the local mutable variable res.
The surrounding feature count_even remains pure.

Since operations on effects are accessed via their type in
an expression effect_type.env.operation, and types can
be type parameters, it is now possible to pass effect types
as type parameters in calls. As an example, the Fuzion base
library provides a feature Mutable_Linked_List that ex-
pects a type parameter LM type : mutate that may be
any type derived from mutate. This permits simultaneously
using several instances of mutable linked lists that use dif-
ferent versions of mutate enabling fine-grain control of local
mutability.

5 Implementation
The Fuzion toolchain uses two intermediate steps: First,
Fuzion source code is translated into Fuzion modules that
essentially contain a set of feature declarations.

Second, an application is created from a set of these mod-
ules that are compiled into the Fuzion intermediate repre-
sentation. In this representation, Fuzion features with type
parameters are specialized for the actual types that are as-
signed to their type parameters. Finally, the back end creates
code from this intermediate representations. Currently, there
are two back ends, one creating C source code and an inter-
preter implemented in Java.
Type values in the intermediate representation are unit

type values, i.e., they do not contain any data and no code is
generated for an assignment of a type value.
Only when assigned to a reference type like Any, which

is Fuzion’s generic object reference type, these values get
boxed into a heap allocated reference that can be used, e.g,
to convert the type to a string using as_string.

The specialization of code for actual type parameters and
the fact that type values are unit type values imply that this is
a zero-cost abstraction, there is no code needed for assigning
type values nor for any dynamic lookup when calling inner
features defined in type features.

6 Related Work
Scala has a similar goal to Fuzion of unifying functional
and object-oriented approaches[7]. Läufer and Odersky sug-
gested explicit type variables by incorporating first-class
abstract types as an extension of algebraic data types[5].
Moors et al present a solution to remove limitation of type
parameters by allowing type constructors as type param-
eters and avoiding the additional boilerplate using Scala’s
implicits[6].
The challenge of escaping of named effects has been ad-

dressed by previous work[1, 12]. Xie et all recently proposed
to treat effect handler names as first-class values[11].

The syntax of comptime types in Zig[13] is similar to that
of Fuzion type parameters and their treatment as purely
compile time values results in specialized code similar to the
monomorphization perfomed for Fuzions intermediate code.
Zig‘s comptime mechanisms, however, has a different goal
of providing a a high-level macro mechanism.

7 Conclusion
Fuzion unifies different concepts in programming languages.
Types in Fuzion are unit type values defined by implicitly
generated type features. These type features are counterparts
of constructor features. They allow the definition of inner
features relative to a type. Type values can be passed as
type parameters in calls where they can not only be used
to define new types, but also as the target of calls that are
specific to that type. This increases the power of generic
functions without imposing a runtime cost.
Furthermore, types in Fuzion are used to name effects

and can be used to create effects locally that permit safely
limiting the scope of these effects.

Acknowledgments
Thanks to the anonymous reviewers for helpful comments
and related work that I was unaware of. Also thanks to
the Fuzion team at Tokiwa Software GmbH for providing
important ideas and feedback.

References
[1] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.

2019. Binders by Day, Labels by Night: Effect Instances via Lexically
Scoped Handlers. Proc. ACM Program. Lang. 4, POPL, Article 48 (dec
2019), 29 pages. https://doi.org/10.1145/3371116

[2] Fridtjof Siebert et al. 2023. Fuzion GitHub Repository. https://github.
com/tokiwa-software/fuzion

[3] Fridtjof Siebert et al. 2023. Fuzion Portal Website. https://flang.dev
[4] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feath-

erweight Java: A Minimal Core Calculus for Java and GJ. ACM Trans.
Program. Lang. Syst. 23, 3 (may 2001), 396–450. https://doi.org/10.
1145/503502.503505

[5] Konstantin Läufer and Martin Odersky. 1994. Polymorphic Type
Inference and Abstract Data Types. ACM Trans. Program. Lang. Syst.
16, 5 (sep 1994), 1411–1430. https://doi.org/10.1145/186025.186031

https://doi.org/10.1145/3371116
https://github.com/tokiwa-software/fuzion
https://github.com/tokiwa-software/fuzion
https://flang.dev
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/186025.186031

Types as First-Class Values in Fuzion

[6] Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Generics
of a Higher Kind. SIGPLAN Not. 43, 10 (oct 2008), 423–438. https:
//doi.org/10.1145/1449955.1449798

[7] Martin Odersky and Tiark Rompf. 2014. Unifying Functional and
Object-Oriented Programming with Scala. Commun. ACM 57, 4 (apr
2014), 76–86. https://doi.org/10.1145/2591013

[8] Gordon Plotkin and John Power. 2003. Algebraic operations and
generic effects. Applied categorical structures 11 (2003), 69–94.

[9] Gordon D Plotkin and Matija Pretnar. 2013. Handling algebraic effects.
Logical methods in computer science 9 (2013).

[10] The Effekt research team. 2023. Effekt Language — Effect Safety.
https://effekt-lang.org/docs/concepts/effect-safety

[11] Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022.
First-Class Names for Effect Handlers. Proc. ACM Program. Lang. 6,
OOPSLA2, Article 126 (oct 2022), 30 pages. https://doi.org/10.1145/
3563289

[12] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-Safe Effect
Handlers via Tunneling. Proc. ACM Program. Lang. 3, POPL, Article 5
(jan 2019), 29 pages. https://doi.org/10.1145/3290318

[13] Zig Software Foundation. 2023. Zig Compile-Time Concept.
https://ziglang.org/documentation/master/#Introducing-the-
Compile-Time-Concept

https://doi.org/10.1145/1449955.1449798
https://doi.org/10.1145/1449955.1449798
https://doi.org/10.1145/2591013
https://effekt-lang.org/docs/concepts/effect-safety
https://doi.org/10.1145/3563289
https://doi.org/10.1145/3563289
https://doi.org/10.1145/3290318
https://ziglang.org/documentation/master/#Introducing-the-Compile-Time-Concept
https://ziglang.org/documentation/master/#Introducing-the-Compile-Time-Concept

	Abstract
	1 Introduction
	2 Types as Values
	3 Type Features
	4 Types to Identify Effects
	4.1 Using types to distinguish effect instances

	5 Implementation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

