
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Exploring modal types for the Intel Quantum SDK
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1 Introduction
Quantum computers operate on a computationalmodel based
not on bits 0 and 1, but on qubits: linear combinations of
⋃︀0̃︀ = ( 10 ) and ⋃︀1̃︀ = ( 01 ) in a complex vector space [13]. As a
result, programming quantum algorithms comes with limi-
tations, including the limited operations allowed on qubits
(unitary transformations, preparations, and measurements).
On top of that, current quantum hardware, which treats a
quantum computer as a co-processor, imposes evenmore con-
straints. For example, the physical distance between quan-
tum and classical (non-quantum) components means that
executing classical operations takes an order of magnitude
more time than quantum ones, and so may not be achievable
in the amount of time a quantum state can be maintained
(coherence time) [21].

Modern quantum programming languages thus tend to
fall in two camps. Quantum circuit description languages
like Qiskit [16], t⋃︀ket̃︀ [19], and Cirq [6] enable program-
mers to construct standalone quantum circuits that can be
executed on quantum devices as they exist today or in the
near future. As such, algorithms that mix classical and quan-
tum logic must construct those two parts separately. On the
other hand, idealized higher-level quantum programming
languages like Q# [20] enable arbitrary mixing of quantum
and classical operations so that programmers can focus on
higher-level algorithm design; as a result, not all programs
can be immediately deployed on real devices.
The Intel® Quantum SDK is a quantum programming

framework that aims for the best of both worlds. It extends
C++with quantum kernels that mix classical and quantum op-
erations, but which are compiled to quantum basic blocks exe-
cutable near-term devices using a powerful runtimemodel [9].
The exact rules for how classical and quantum operations
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can mix in the Intel Quantum SDK are currently given as
informal programming guidelines:

1. All qubit references must be resolvable at compile
time. That is, the state of a qubit may change during
runtime, but each qubit variable must correspond to a
constant unique identifier.

2. If a quantum instruction depends on a classical param-
eter, that parameter cannot rely on any measurement
results from that same kernel. However, it may rely on
measurement results from previous quantum kernels.

3. Measurement outcomes can be used within the same
quantum kernel as long as no quantum operations
depend on them.

4. Classical operations can be contained within dynamic
control flow (if statements and loops), but quantum
operations can only occur in such structures if they
can be unrolled at compile time.

5. The same qubit cannot be used as both a control and
another qubit in the same gate.1

While some of these rules (e.g. 1 and 5) are checked at
compile-time, others (2 and 3) are left to the user to enforce,
and can lead to unexpected results if violated. Others (4)
are checked at compile-time, but in a strict way that could
potentially rule out valid programs.
This extended abstract proposes a type system for a sim-

ple quantum programming language inspired by the Intel
Quantum SDK, drawing on ideas from modal and linear type
systems. It uses three modes—compile-time, classical run-
time, and quantum runtime—to ensure that data written by
the quantum machine is not consumed in the same quantum
kernel. We also give a compilation strategy to a runtime lan-
guage with a goal of showing that well-typed programs are
compiled to quantum basic blocks with the same semantics.

2 A high-level quantum-classical language
We start with a simple hybrid quantum-classical language
capturing the main design components of the Intel Quantum
SDK, which includes quantum instructions, assignments, and

1This last constraint is typically handled by linear or affine type systems [18,
22], but it is easily checked because of Item 1 so we do not dwell on it in
this abstract.

1
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if statements.
insn ∶∶= 𝑥 ∶= insn ⋃︀ insn1; insn2 ⋃︀ invoke(insn)

⋃︀𝑈 (𝑒1, . . . , 𝑒𝑛)(𝑒
′

1, . . . , 𝑒
′

𝑚) ⋃︀ Prep(𝑒) ⋃︀ Meas(𝑒, 𝑥)

⋃︀ if 𝑒 then insn1 else insn2 ⋃︀ for 𝑥 = 𝑒 to 𝑒′ do insn′

𝑒 ∶∶= 𝑥 ⋃︀ 𝑐 ∈ B ∪ Z ∪R ⋃︀ (𝑒1, 𝑒2) ⋃︀ 𝑒1 + 𝑒2 ⋃︀ ⋯

Unitary gates𝑈 (𝑒𝑖)(𝑒′𝑗) are primitive quantum operations
that may take both quantum parameters 𝑒𝑖 and classical
parameters 𝑒′𝑗 . A preparation gate Prep(𝑒) resets the state of
a qubit 𝑒 to ⋃︀0̃︀, and Meas(𝑒, 𝑥) measures a qubit and writes
the measurement result to the boolean variable 𝑥 .
The invoke instruction executes a quantum kernel on a

quantum device. It should be the case that every invocation
can be compiled to a quantum basic block.
Following [7, 17], we can define a small-step operational

semantics that updates a classical state 𝜎 (an assignment of
classical variables to values) and a quantum state given as a
partial density matrix 𝜌 : insn⇑∐︀𝜎, 𝜌̃︀→ insn′⇑∐︀𝜎 ′, 𝜌 ′̃︀.2

3 Modes and types
Our goal is a type system for this classical-quantum lan-
guage that allows as much mixing of classical and quantum
operations as possible, while still preserving the semantics
when compiled. We use the compile-time mode C to indi-
cate a computation or variable available at compile-time. We
then use the classical (R) and quantum (Q) runtime modes
to indicate whether or not a computation depends on the
results from a quantum kernel.

Typing contexts Γ assign modes𝑚 and types 𝜏 to variables.
𝑚 ∶∶= C ⋃︀ R ⋃︀ Q
𝜏 ∶∶= () ⋃︀ qbit ⋃︀ B ⋃︀ Z ⋃︀ R ⋃︀ 𝜏1 × 𝜏2

Γ ∶∶= ⋅ ⋃︀ Γ, 𝑥 ∶𝑚 𝜏

Expressions are typed with respect to a mode, written
Γ ⊢ 𝑒 ∶𝑚 𝜏 . For example:

𝑥 ∶𝑚 𝜏 ∈ Γ

Γ ⊢ 𝑥 ∶𝑚 𝜏

Γ ⊢ 𝑒1 ∶𝑚 𝜏1 Γ ⊢ 𝑒2 ∶𝑚 𝜏2

Γ ⊢ (𝑒1, 𝑒2) ∶𝑚 𝜏1 × 𝜏2

Fig. 1 shows a sample of typing rules for instructions: the
judgment Γ ⊢ insn ∶ 𝑚 indicates that insn is well-typed at
mode𝑚 under context Γ. In the quantum-specific instruc-
tions, expressions of qubit type must be available at mode C
to satisfy Item 1. The parameters to unitary gates must be
available at classical runtime, whereas measurement results
(written to the variable 𝑥 ) are at quantum runtime, meaning
they cannot be used as parameters in the same quantum
kernel (Items 2 and 3).
As an example, let Γ = 𝑧 ∶R R, 𝑞 ∶C qbit. Then 𝑧 can be

used to compute a parameter to a unitary gate, as in Γ ⊢
RZ(𝑞)(𝑧𝜋2 ) ∶ Q

3. On the other hand, 𝑥 ∶= Meas(𝑞);RZ(𝑞)(𝑥𝜋2 )
2We omit its definition for the sake of space.
3RZ(𝑞)(𝑒) is a unitary operator known as a 𝑍 rotation, and it takes one
qubit and one classical parameter.

Γ ⊢ 𝑒𝑖 ∶C qbit Γ ⊢ 𝑒′𝑗 ∶R R

Γ ⊢ 𝑈 (𝑒1, . . . , 𝑒𝑛)(𝑒
′

1, . . . , 𝑒
′

𝑚) ∶ Q

Γ ⊢ 𝑒 ∶C qbit
Γ ⊢ Prep(𝑒) ∶ Q

Γ ⊢ 𝑒 ∶C qbit Γ ⊢ 𝑥 ∶Q B

Γ ⊢ Meas(𝑒, 𝑥) ∶ Q

Γ ⊢ 𝑒 ∶C B Γ ⊢ insn1 ∶ Q Γ ⊢ insn2 ∶ Q
Γ ⊢ if 𝑒 then insn1 else insn2 ∶ Q

Γ ⊢ 𝑒 ∶𝑚 B Γ ⊢ insn1 ∶𝑚 Γ ⊢ insn2 ∶𝑚 𝑚 ∈ {C,R}
Γ ⊢ if 𝑒 then insn1 else insn2 ∶ R

Γ ⊢ 𝑒𝑖 ∶C N Γ, 𝑥 ∶C N ⊢ insn ∶ Q
Γ ⊢ for 𝑥 = 𝑒1 to 𝑒2 do insn ∶ Q

Γ ⊢ 𝑒 ∶𝑚 𝜏 Γ ⊢ 𝑥 ∶𝑚 𝜏

Γ ⊢ 𝑥 ∶= 𝑒 ∶𝑚′
Γ ⊢ insn1 ∶𝑚 Γ ⊢ insn2 ∶𝑚

Γ ⊢ insn1; insn2 ∶𝑚

Γ ⊢ insn ∶ Q
R ⋅ Γ ⊢ invoke(insn) ∶ R

𝑚
′
⋅ Γ ⊢ insn ∶𝑚′ ⋅𝑚

Γ ⊢ insn ∶𝑚

Figure 1. Typing rules for instructions Γ ⊢ insn ∶𝑚.

is not well-typed because the rotation parameter depends
on the output of a measurement at mode Q.
There are two rules for if statements (and similarly for

for statements, but elided for space), depending on if it is
executed at quantum runtime or not. For the quantum run-
time, if statements are only allowed if they can be unrolled
at compile time: the conditional 𝑒 must have mode C. For
example, if 𝑞1 = 𝑞2 then Prep(𝑞1) else skip is well-typed
at modeQ since the qubit references 𝑞1 and 𝑞2 are resolvable
at compile time. For the classical runtime or compile time,
the conditional can be any expression available at that mode.

The last set of rules has to do with how different modes in-
teract. The rule for invoke(insn) lifts a quantum instruction
at mode Q to the classical runtime. However, this can only
be done in a context without any variables at Q, indicated
by the context R ⋅ Γ. This scaling operator ensures that all
variables in the typing context are at modes R or C, akin to
linear logic’s ! promotion rule [1].

𝑚 ⋅ (Γ, 𝑥 ∶′𝑚 𝜏) =𝑚 ⋅ Γ, 𝑥𝑚⋅𝑚′𝜏

𝑚 ⋅𝑚 =𝑚

𝑚1 ⋅𝑚2 =𝑚2 ⋅𝑚1

C ⋅𝑚 = C
R ⋅Q = R

Finally, the last rule enables use of classical computations
at modeQ (or compile-time computations at modeR). This is
safe because when compiled, they can be pushed to outside
the quantum kernel. For example, insn0 = if 𝑥 then 𝑦 ∶=
𝜋
2 else 𝑦 ∶= 3𝜋

2 can be typed at mode R under the context
2
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R ⋅ Γ = 𝑥 ∶R B,𝑦 ∶R R where Γ = 𝑥 ∶Q B,𝑦 ∶Q R. Therefore:

𝑞 ∶C qbit, 𝑥 ∶Q B ⊢ Meas(𝑞, 𝑥) ∶ Q
R ⋅ Γ ⊢ insn0 ∶ R
Γ ⊢ insn0 ∶ Q

𝑞 ∶C qbit, Γ ⊢ Meas(𝑞, 𝑥); insn0 ∶Q R

4 A quantum runtime language
Next, we specify a subset of the above language executable
on realistic quantum device. This is done by distinguishing
between purely classical instructions and quantum basic
blocks (QBBs) consisting of purely quantum instructions,
where all qubit references must be constant indexes 𝑖 ∈ N
into the quantum state. In addition, in unitary gates classical
parameters will all be given as variables rather than expres-
sions; the values assigned to variables must be fixed at the
start of quantum runtime.

cinsn ∶∶= skip ⋃︀ cinsn1; cinsn2 ⋃︀ 𝑧 ∶= cinsn ⋃︀ invoke(qbb)
⋃︀ if 𝑒 then cinsn1 else cinsn0 ⋃︀ for 𝑥 = 𝑒1 to 𝑒2 do insn

qbb ∶∶= skip ⋃︀ qbb1; qbb2
⋃︀𝑈 (𝑖1, . . . , 𝑖𝑛)(𝑥1, . . . , 𝑥𝑚) ⋃︀ Prep(𝑖) ⋃︀ Meas(𝑖, 𝑥)

The same typing rules apply to the runtime language as
the high-level language, although of course there are no if
statements or assignments at mode Q.

The semantics of the runtime language is similarly given
as small-step operational semantics.

Compiling the hybrid high-level language to the runtime
language consists of two main steps:
● Conditional if statements containing quantum instruc-
tions are completely unrolled.
● Quantum kernels are broken into three parts: classical
instructions executed before the QBB, the QBB itself,
and classical instructions executed after the QBB.

Compilation occurs under a compile-time environment 𝛾
that assigns compile-time variables 𝑥 ∶C 𝜏 ∈ Γ to values. We
can guarantee that if Γ ⊢ 𝑒 ∶C 𝜏 then we can compile 𝑒 to a
value 𝑣 of type 𝜏 under 𝛾 , written 𝛾 ⊢ 𝑒 ↓ 𝑣 .

A purely classical instruction Γ ⊢ insn ∶R 𝜏 will be com-
piled to a single classical instruction in the runtime lan-
guage: 𝛾 ⊢ insn ↝R cinsn such that Γ ⊢ cinsn ∶R 𝜏 . On
the other hand, a quantum instruction Γ ⊢ insn ∶Q 𝜏 will
be compiled to a tuple of instructions (︀cinsn, qbb, cinsn′⌋︀,
written 𝛾 ⊢ insn ↝Q (︀cinsn, qbb, cinsn′⌋︀, corresponding to
cinsn; invoke(qbb); cinsn′.
For example, a unitary gate 𝑈 (𝑒1, . . . , 𝑒𝑛)(𝑒′1, . . . , 𝑒′𝑛) that

satisfies Γ ⊢ 𝑒𝑖 ∶C qbit and Γ ⊢ 𝑒′𝑗 ∶R R will be compiled as

𝛾 ⊢ 𝑒𝑖 ↓ 𝑣𝑖 𝑥 𝑗 fresh

𝛾 ⊢𝑈 (Ð→𝑒𝑖 )(
Ð→
𝑒′1 )↝

Q
(︀
ÐÐÐÐ→
𝑥 𝑗 ∶= 𝑒

′

𝑗 ,𝑈 (
Ð→𝑣𝑖 )(
Ð→𝑥 𝑗 ), skip⌋︀

If statements typed at mode Q will be unrolled as follows
(and similarly for false and for loops):

𝛾 ⊢ 𝑒 ↓ true 𝛾 ⊢ insn1 ↝Q
(︀cinsn, qbb, cinsn′⌋︀

𝛾 ⊢ if 𝑒 then insn1 else insn2 ↝Q
(︀cinsn, qbb, cinsn′⌋︀

For Γ ⊢ 𝑥 ∶= 𝑒 , if the mode of 𝑒 is R, it is moved to before
the QBB, and if Q, it is moved to after the QBB.

𝛾 ⊢ 𝑥 ∶= 𝑒 ↝Q
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

(︀𝑥 ∶= 𝑒, skip, skip⌋︀ 𝑒 at mode R
(︀skip, skip, 𝑥 ∶= 𝑒⌋︀ 𝑒 at mode Q

Finally, for insn1; insn2, if 𝛾 ⊢ insn𝑖 ↝Q (︀cinsn𝑖 , qbb𝑖 , cinsn
′

𝑖⌋︀:

𝛾 ⊢ insn1; insn2 ↝Q
(︀cinsn1; cinsn2,
qbb1; qbb2,
cinsn′1; cinsn′2⌋︀

where we assume variables written by cinsn2 are not read
by qbb1 or cinsn′1.4 Intuitively, this is safe because variables
written to in cinsn′1 are all at mode Q, and thus will not be
needed by cinsn2 or qbb2.

The safety of this compilation strategy is captured by the
following conjecture, which is left for future work:

Conjecture 1. Let 𝛾 is a compile-time environment for Γ.
If Γ ⊢ insn ∶ R and 𝛾 ⊢ insn↝R cinsn, then insn ≅ cinsn.
If Γ ⊢ insn ∶ Q and 𝛾 ⊢ insn ↝Q (︀cinsn, qbb, cinsn′⌋︀, then

insn ≅ cinsn; invoke(qbb); cinsn′.

The equivalence of insn with cinsn will depend on the
small-step semantics of the two languages; in particular we
will define a logical relation between configurations in the
two languages and prove that all well-typed programs and
their compilation satisfy that relation.

5 Related and Future work
The modal type theory in this abstract is closely related to
indexed variations of linear type systems including quanti-
tative type theory [1], linear Haskell [2], and Granule [14],
as well as modal type systems for coeffects [8, 10, 15] and
staged compilation [5].

Though this system is focused on the particular program-
ming environment of the Intel Quantum SDK, it could be
adapted to other systems that mix classical and quantum
computation for near-term quantum devices [4, 12], as well
as for quantum intermediate representations that target a
variety of hybrid quantum-classical architectures [3, 11].

This abstract is the first step towards developing a sound
type checker for the Intel Quantum SDK. To apply it in prac-
tice, we must extend the type system to deal with arrays and
pointers, loops, functions, and arbitrary classical C++/LLVM
constructs. Once implemented, it would provide users crucial
feedback for programming and debugging in terms of how
classical and quantum instructions interact at a high level.
4Such variables can always be renamed without loss of generality.
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