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Abstract
We explore the definition of an intrinsically typed interpreter
for stratified System F in Agda.
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1 Introduction
Defining semantics is one of the key activities of a program-
ming languages researcher. We learn that there are different
styles of dynamics (small-step, big-step, denotational, just
to name the most frequently used one), each with different
trade-offs. When it comes to implementing or mechaniz-
ing semantics, there are further options to choose from, in
particular if we are also interested in statics.

One important choice is whether we want to express the
statics extrinsically or intrinsically, that is, do we want to
start with untyped syntax and then define the statics as an
afterthought, or do we integrate types with the syntax.
If we opt for intrinsically typed syntax, some properties

are already paid for by construction. For instance, a small-
step semantics for intrinsically typed syntax satisfies type
preservation by construction. For another instance, consider
specifying a denotational semantics by a compositional map-
ping from syntax to some semantic domain. With untyped
syntax, the semantic domain has to lump the interpretations
of different types together and distinguish them using type
tags. But with intrinsically typed syntax the semantics can
map into type-indexed semantic domains and thus elide type
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tags. This observation directly translates to tagless inter-
preters on intrinsically typed syntax, which elide tag checks
at run time.
For concreteness, we show the well-known example of

a tagless interpreter for the simply-typed lambda calculus
implemented in Agda in Figure 1. We define the syntax as
an inductive data type along with a compositional mapping
to the semantic domain, spanned by Agda’s natural number
type and the function space. We define intrinsically typed
syntax of expressions as an inductive datatype parameter-
ized over a typing environment and indexed on the return
type. For variables, we use de Bruijn indices into the typing
environment.
The semantics of a typing environment is a run-time en-

vironment in the form of a heterogenous list of suitably
typed values. With all that, we can define the semantics of
an expression EJ_K as a function from the semantics of a
typing environment GJ_K to the semantics of the type T J_K.
Clearly this definition also serves as a tagless interpreter for
the simply-typed lambda calculus, which means that type
preservation is also built into its definition. Moreover, as
Agda accepts this definition as terminating, we know that
evaluation of every simply-typed lambda term terminates; a
non-trivial semantic property of the simply-typed lambda
calculus.
Agda-encodings of intrinsically-typed interpreters have

been explored quite a lot, but rarely in the context of poly-
morphic source languages. One possible reason is that the
archetypical polymorphic lambda calculus, System F, cannot
be embedded in Agda because of its impredicativity. This
begs the question if we can develop a tagless interpreter for
a predicative version of System F in Agda.

We answer this question affirmatively for Leivant’s strati-
fied version of the polymorphic lambda calculus [10]. The
key idea of his calculus is to stratify the set of polymorphic
types in levels such that universal quantification only ranges
over strictly smaller levels. This restriction literally embod-
ies predicativity and, as we will discover, the stratification
corresponds directly to Agda’s universe stratification.

2 Types
The definition of the type language for stratified System F
is taken literally from Leivant’s paper. It is defined as an
inductive type parameterized over a level environment (that
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module STLC where

open import Data.Nat using (N; zero; suc)
open import Data.List using (List; []; _::_)

data Type : Set where
nat : Type
_⇒_ : Type → Type → Type

T J_K : Type→ Set
T J nat K = N
T J S ⇒ T K = T J S K → T J T K

Env = List Type

data _∈_ : Type → Env→ Set where
here : ∀ {T Γ}→ T ∈ (T :: Γ)
there : ∀ {S T Γ}→ S ∈ Γ → S ∈ (T :: Γ)

data Expr (Γ : Env) : Type → Set where
con : N→ Expr Γ nat
var : ∀ {T}→ T ∈ Γ → Expr Γ T
lam : ∀ {S T}→ Expr (S :: Γ) T → Expr Γ (S ⇒ T)
app : ∀ {S T} → Expr Γ (S ⇒ T)→ Expr Γ S → Expr Γ T

data GJ_K : Env→ Set where
[] : GJ [] K
_::_ : ∀ {T Γ}→ T J T K → GJ Γ K → GJ T :: Γ K

lookup : ∀ {T Γ}→ T ∈ Γ → GJ Γ K → T J T K
lookup here (x :: _) = x
lookup (there x) (_ :: 𝛾 ) = lookup x 𝛾

EJ_K : ∀ {Γ T}→ Expr Γ T → GJ Γ K → T J T K
EJ con n K 𝛾 = n
EJ var x K 𝛾 = lookup x 𝛾
EJ lam e K 𝛾 = _ v→ EJ e K (v :: 𝛾 )
EJ app e1 e2 K 𝛾 = EJ e1 K 𝛾 (EJ e2 K 𝛾 )

Figure 1. Simply typed lambda calculus, denotationally

assigns levels to free type variables) and indexed over the
level of the type.
LEnv = List Level
data Type (Δ : LEnv) : Level → Set where
nat : Type Δ zero
_⇒_ : Type Δ ℓ → Type Δ ℓ ′ → Type Δ (ℓ ⊔ ℓ ′)
‘_ : ℓ ∈ Δ → Type Δ ℓ

‘∀ : ∀ ℓ → Type (ℓ :: Δ) ℓ ′ → Type Δ (suc ℓ ⊔ ℓ ′)

The unit type lives at level 0. Type variables live at their
declared level. The level of a function type 𝑆 ⇒ 𝑇 is the
maximum of the levels of 𝑆 and 𝑇 . The level of a universal
quantification at level 𝑙 is the maximum of 𝑙 + 1 and the level
of the body.

As for the simply-typed lambda calculus, we can define a
compositional mapping from type syntax to Agda types.

T J_K : Type Δ ℓ → DEnv Δ → Set ℓ
T J nat K [ = N
T J T1 ⇒ T2 K [ = T J T1 K [ → T J T2 K [
T J ‘ 𝛼 K [ = apply-env [ 𝛼

T J ‘∀ ℓ T K [ = (D : Set ℓ) → T J T K (ext-env D [)

Given a type at level 𝑙 , this function returns an Agda type in
Set 𝑙 . To do so it needs a domain environment to interpret
type variables. This environment gets extended in the last
clause that maps universal quantification to a dependent
function that takes an element of Set 𝑙 and pushes it on the
environment.

The type of the domain environment is interesting because
its range type is unusual.

data DEnv : LEnv→ Set𝜔 where
[] : DEnv []
_::_ : Set ℓ → DEnv Δ → DEnv (ℓ :: Δ)

As a value in the environment (the interpretation of a type,
colloquially speaking) can live in a Set 𝑙 , for any finite level
𝑙 , we cannot assign the type any finite level. Hence, the
type DEnv lives in the limit type Set𝜔 , which we use in this
definition.

3 Expressions
Inspired by the encoding of System 𝐹𝜔 by Chapman and
coworkers [7], we define a unified environment for type
variables and term variables. Type environments grow to the
left.

data TEnv : LEnv → Set where
∅ : TEnv []
_◁_ : Type Δ ℓ → TEnv Δ → TEnv Δ – term variable

_◁*_ : ∀ ℓ → TEnv Δ → TEnv (ℓ :: Δ) – type variable

Membership of a term variable in a type environment is
defined by the inn relation.

data inn : Type Δ ℓ → TEnv Δ → Set where
here : ∀ {T : Type Δ ℓ}{Γ}

→ inn T (T ◁ Γ)
there : ∀ {T : Type Δ ℓ}{T′ : Type Δ ℓ ′}{Γ}

→ inn T Γ → inn T (T′ ◁ Γ)
tskip : ∀ {T : Type Δ ℓ}{Γ}

→ inn T Γ → inn (Twk T) (ℓ ′ ◁* Γ)

In the last alternative, we skip over a type binding. Hence,
the type 𝑇 we find under the binding must be weakened to
account for the extra type variables. Weakening is a special
case of renaming, which is implemented as advocated by
Benton and coworkers [4].

The type of expressions is now given as follows.
2
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data Expr {Δ : LEnv} (Γ : TEnv Δ) : Type Δ ℓ → Set where
#_ : ∀ (n : N) → Expr Γ nat
‘_ : ∀ {T : Type Δ ℓ}

→ inn T Γ → Expr Γ T
o_ : ∀ {T : Type Δ ℓ}{T′ : Type Δ ℓ ′}

→ Expr (T ◁ Γ) T′ → Expr Γ (T ⇒ T′)
_·_ : ∀ {T : Type Δ ℓ}{T′ : Type Δ ℓ ′}

→ Expr Γ (T⇒ T′)→ Expr Γ T→ Expr Γ T′

𝛬 : ∀ (ℓ : Level)→ {T : Type (ℓ :: Δ) ℓ ′}
→ Expr (ℓ ◁* Γ) T → Expr Γ (‘∀ ℓ T)

_•_ : ∀ {T : Type (ℓ :: Δ) ℓ ′}
→ Expr Γ (‘∀ ℓ T)→ (T′ : Type Δ ℓ)
→ Expr Γ (T [ T′ ]T)

Variables, lambda abstractions, and application are encoded
just like for the simply-typed lambda calculus. Type abstrac-
tion takes a level 𝑙 and a body where the new type variable
is bound to 𝑙 . Type application takes an expression with
universal quantification at level 𝑙 and a type 𝑇 ′ of level 𝑙 . It
constructs an expression where type𝑇 ′ has been substituted
in the body 𝑇 of the quantified type. Substitution is defined
as in PLFA [4, 9].

4 Semantics
It remains to define a compositional function from the expres-
sion syntax to the semantic domain that we already prepared
in Section 2. We start with value environments.

Env : (Δ : LEnv)→ TEnv Δ → DEnv Δ → Set𝜔
Env Δ Γ [ = ∀ {ℓ}{T : Type Δ ℓ} → inn T Γ → T J T K [

Value environments are represented as functions—we could
have done that in the simply-typed interpreter, too. They are
indexed by a domain environment to be able to calculate the
correct return type.

The definition of the interpretation function follows.

EJ_K : ∀ {T : Type Δ ℓ}{Γ : TEnv Δ}
→ Expr Γ T → ([ : DEnv Δ)→ Env Δ Γ [ → T J T K [

EJ # n K [ 𝛾 = n
EJ ‘ x K [ 𝛾 = 𝛾 x
EJ o_ e K [ 𝛾 = _ v→ EJ e K [ (extend 𝛾 v)
EJ e1 · e2 K [ 𝛾 = EJ e1 K [ 𝛾 (EJ e2 K [ 𝛾 )
EJ 𝛬 ℓ e K [ 𝛾 = _ D → EJ e K (ext-env D [) (extend-tskip 𝛾 )
EJ _•_ {T = T} e T′ K [ 𝛾 =
subst id (sym (single-subst-preserves T′ T))
(EJ e K [ 𝛾 (T J T′ K [))

The cases for term variables, lambda abstraction, and appli-
cation are similar to the simply-typed lambda calculus.
The first issue arises in the case for type abstraction. We

interpret a type abstraction at level 𝑙 as a function with
argument type Set 𝑙 . This argument has to be pushed onto the
domain environment [ and we have to account at the value

level for the additional type variable in the type environment.
The following function adapts the types.

extend-tskip : ∀ {Δ : LEnv}{Γ : TEnv Δ}{[ : DEnv Δ}{D : Set ℓ}
→ Env Δ Γ [ → Env (ℓ :: Δ) (ℓ ◁* Γ) (D :: [)

extend-tskip {[ = [} {D = D} 𝛾 (tskip{T = T} x) =
subst id (sym (ren*-preserves-semantics {𝜌 = wk𝑟 }{[}{D :: [}

(wk𝑟∈TRen* [ D) T))
(𝛾 x)

The lemma we need in the rewrite clause proves that inter-
preting aweakened type in an extended domain environment
gives the same result as interpreting the type in the orginal
domain environment. The statement of this lemma is more
general as it applies to arbitrary renamings:

ren*-preserves-semantics :
∀ {𝜌 : TRen Δ1 Δ2}{[1 : DEnv Δ1}{[2 : DEnv Δ2}
→ (ren* : TRen* 𝜌 [1 [2) → (T : Type Δ1 ℓ)
→ T J Tren 𝜌 T K [2 ≡ T J T K [1

The argument 𝑟𝑒𝑛∗ roughly states that [1 and [2 are domain
environments related by renaming 𝜌 by precomposition [1 ≡
[2 ◦ 𝜌 . The proof of the lemma is by induction on 𝑇 with an
interesting subgoal in the case for universal quantification:

(T : Type (ℓ :: Δ1) ℓ ′) →
((D : Set ℓ) → T J Tren (ext𝑟 𝜌) T K (D :: [2)) ≡
((D : Set ℓ)→ T J T K (D :: [1))

We can show that the ranges of the function are equal with
the inductive hypothesis. But the usual extensionality prin-
ciple does not let us expose this equation. However, it can be
used to prove a dependent extensionality principle (from the
standard library), which enables us to complete the proof.

∀-extensionality :
∀ {a b}{A : Set a}{F G : (𝛼 : A)→ Set b}
→ (∀ (𝛼 : A) → F 𝛼 ≡ G 𝛼)
→ ((𝛼 : A)→ F 𝛼) ≡ ((𝛼 : A)→ G 𝛼)

The final case for type application opens two different
cans of worms. First, the type of the right hand side does
not match the expected type. Essentially, we have to prove
that the composition of the meaning function for types com-
mutes with substitution. Here 𝑇 [𝑇 ′] substitutes 𝑇 ′ for the
outermost variable of 𝑇 .

single-subst-preserves :
∀ {[ : DEnv Δ} (T′ : Type Δ ℓ) (T : Type (ℓ :: Δ) ℓ ′)
→ T J T [ T′ ]T K [ ≡ T J T K (T J T′ K [ :: [)

Second, some steps in the proof involve equalities over en-
tities of Set𝜔 . These cannot be handled with the standard
definition of propositional equality which works parametri-
cally for entities of Set 𝑙 , for any 𝑙 , but not for Set𝜔 . While
it is easy to define these equalities, it is somewhat tedious
to re-establish standard lemmas for transforming equality
proofs like cong, subst, and trans to deal with Set𝜔 .

3
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5 Related Work
Arjen Rouvoet’s thesis [14] gives an excellent overview of the
state of the art in intrinsically typed techniques for modeling
language semantics. He pushed the limits of this technology
in a range of papers with various coauthors [11, 15, 16, 18].
Giving semantics in an interpretive style is a defining

feature of denotational semantics [17], but it can be traced
back to Reynolds’s idea of definitional interpreters [12].

The particular encoding of de Bruijn style variable repre-
sentations used in this work dates back to work on nested
datatypes [2, 5, 6], which subsequently lead to GADTs [8].
A tagless interpreter for a simply typed calculus was de-

veloped in Cayenne [3], but for extrinsically typed syntax
(i.e., syntax and separate typing predicatepe).

Intrinsically typed encodings are further studied by Allais
and others [1], who define a range of tagless functions in-
cluding denotational semantics on intrinsically typed terms.

We draw some inspiration from the program implemented
by Benton and coworkers [4]. Based on intrinsically typed
syntax for a simply-typed lambda applied calculus, they de-
fine a big-step semantics and a set-theoretic denotational
semantics. They prove soundness of the former semantics
with respect to the latter as well as adequacy (using a logical
relation). They also develop an expression encoding for Sys-
tem F, but the paper stops short of discussing its semantics.

6 Future Work
We are currently formalizing the small-step semantics of the
language with the goal of proving an adequacy theorem for
reduction with respect to the denotational semantics.

It would also be interesting to extend the stratified calculus
by level quantification as in Agda’s universe polymorphism.
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