
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Towards Tagless Interpretation of Stratified System F
Extended Abstract

Peter Thiemann
thiemann@acm.org
University of Freiburg

Germany

Marius Weidner
weidner@cs.uni-freiburg.de

University of Freiburg
Germany

Abstract
We explore the definition of an intrinsically typed interpreter
for stratified System F in Agda.

Keywords: Agda, stratified System F, extensionality

ACM Reference Format:
Peter Thiemann and Marius Weidner. 2023. Towards Tagless Inter-
pretation of Stratified System F: Extended Abstract. In Proceedings of
ACM Conference (Conference’17).ACM, New York, NY, USA, 4 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Defining semantics is one of the key activities of a program-
ming languages researcher. We learn that there are different
styles of dynamics (small-step, big-step, denotational, just
to name the most frequently used one), each with different
trade-offs. When it comes to implementing or mechaniz-
ing semantics, there are further options to choose from, in
particular if we are also interested in statics.

One important choice is whether we want to express the
statics extrinsically or intrinsically, that is, do we want to
start with untyped syntax and then define the statics as an
afterthought, or do we integrate types with the syntax.
If we opt for intrinsically typed syntax, some properties

are already paid for by construction. For instance, a small-
step semantics for intrinsically typed syntax satisfies type
preservation by construction. For another instance, consider
specifying a denotational semantics by a compositional map-
ping from syntax to some semantic domain. With untyped
syntax, the semantic domain has to lump the interpretations
of different types together and distinguish them using type
tags. But with intrinsically typed syntax the semantics can
map into type-indexed semantic domains and thus elide type

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

tags. This observation directly translates to tagless inter-
preters on intrinsically typed syntax, which elide tag checks
at run time.
For concreteness, we show the well-known example of

a tagless interpreter for the simply-typed lambda calculus
implemented in Agda in Figure 1. We define the syntax as
an inductive data type along with a compositional mapping
to the semantic domain, spanned by Agda’s natural number
type and the function space. We define intrinsically typed
syntax of expressions as an inductive datatype parameter-
ized over a typing environment and indexed on the return
type. For variables, we use de Bruijn indices into the typing
environment.
The semantics of a typing environment is a run-time en-

vironment in the form of a heterogenous list of suitably
typed values. With all that, we can define the semantics of
an expression EJ_K as a function from the semantics of a
typing environment GJ_K to the semantics of the type T J_K.
Clearly this definition also serves as a tagless interpreter for
the simply-typed lambda calculus, which means that type
preservation is also built into its definition. Moreover, as
Agda accepts this definition as terminating, we know that
evaluation of every simply-typed lambda term terminates; a
non-trivial semantic property of the simply-typed lambda
calculus.
Agda-encodings of intrinsically-typed interpreters have

been explored quite a lot, but rarely in the context of poly-
morphic source languages. One possible reason is that the
archetypical polymorphic lambda calculus, System F, cannot
be embedded in Agda because of its impredicativity. This
begs the question if we can develop a tagless interpreter for
a predicative version of System F in Agda.

We answer this question affirmatively for Leivant’s strati-
fied version of the polymorphic lambda calculus [10]. The
key idea of his calculus is to stratify the set of polymorphic
types in levels such that universal quantification only ranges
over strictly smaller levels. This restriction literally embod-
ies predicativity and, as we will discover, the stratification
corresponds directly to Agda’s universe stratification.

2 Types
The definition of the type language for stratified System F
is taken literally from Leivant’s paper. It is defined as an
inductive type parameterized over a level environment (that

1

https://orcid.org/0000-0002-9000-1239
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Peter Thiemann and Marius Weidner

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

module STLC where

open import Data.Nat using (N; zero; suc)
open import Data.List using (List; []; _::_)

data Type : Set where
nat : Type
⇒ : Type → Type → Type

T J_K : Type→ Set
T J nat K = N
T J S ⇒ T K = T J S K → T J T K

Env = List Type

data _∈_ : Type → Env→ Set where
here : ∀ {T Γ}→ T ∈ (T :: Γ)
there : ∀ {S T Γ}→ S ∈ Γ → S ∈ (T :: Γ)

data Expr (Γ : Env) : Type → Set where
con : N→ Expr Γ nat
var : ∀ {T}→ T ∈ Γ → Expr Γ T
lam : ∀ {S T}→ Expr (S :: Γ) T → Expr Γ (S ⇒ T)
app : ∀ {S T} → Expr Γ (S ⇒ T)→ Expr Γ S → Expr Γ T

data GJ_K : Env→ Set where
[] : GJ [] K
:: : ∀ {T Γ}→ T J T K → GJ Γ K → GJ T :: Γ K

lookup : ∀ {T Γ}→ T ∈ Γ → GJ Γ K → T J T K
lookup here (x :: _) = x
lookup (there x) (_ :: 𝛾) = lookup x 𝛾

EJ_K : ∀ {Γ T}→ Expr Γ T → GJ Γ K → T J T K
EJ con n K 𝛾 = n
EJ var x K 𝛾 = lookup x 𝛾
EJ lam e K 𝛾 = _ v→ EJ e K (v :: 𝛾)
EJ app e1 e2 K 𝛾 = EJ e1 K 𝛾 (EJ e2 K 𝛾)

Figure 1. Simply typed lambda calculus, denotationally

assigns levels to free type variables) and indexed over the
level of the type.
LEnv = List Level
data Type (Δ : LEnv) : Level → Set where
nat : Type Δ zero
⇒ : Type Δ ℓ → Type Δ ℓ ′ → Type Δ (ℓ ⊔ ℓ ′)
‘_ : ℓ ∈ Δ → Type Δ ℓ

‘∀ : ∀ ℓ → Type (ℓ :: Δ) ℓ ′ → Type Δ (suc ℓ ⊔ ℓ ′)

The unit type lives at level 0. Type variables live at their
declared level. The level of a function type 𝑆 ⇒ 𝑇 is the
maximum of the levels of 𝑆 and 𝑇 . The level of a universal
quantification at level 𝑙 is the maximum of 𝑙 + 1 and the level
of the body.

As for the simply-typed lambda calculus, we can define a
compositional mapping from type syntax to Agda types.

T J_K : Type Δ ℓ → DEnv Δ → Set ℓ
T J nat K [= N
T J T1 ⇒ T2 K [= T J T1 K [→ T J T2 K [
T J ‘ 𝛼 K [= apply-env [𝛼

T J ‘∀ ℓ T K [= (D : Set ℓ) → T J T K (ext-env D [)

Given a type at level 𝑙 , this function returns an Agda type in
Set 𝑙 . To do so it needs a domain environment to interpret
type variables. This environment gets extended in the last
clause that maps universal quantification to a dependent
function that takes an element of Set 𝑙 and pushes it on the
environment.

The type of the domain environment is interesting because
its range type is unusual.

data DEnv : LEnv→ Set𝜔 where
[] : DEnv []
:: : Set ℓ → DEnv Δ → DEnv (ℓ :: Δ)

As a value in the environment (the interpretation of a type,
colloquially speaking) can live in a Set 𝑙 , for any finite level
𝑙 , we cannot assign the type any finite level. Hence, the
type DEnv lives in the limit type Set𝜔 , which we use in this
definition.

3 Expressions
Inspired by the encoding of System 𝐹𝜔 by Chapman and
coworkers [7], we define a unified environment for type
variables and term variables. Type environments grow to the
left.

data TEnv : LEnv → Set where
∅ : TEnv []
◁ : Type Δ ℓ → TEnv Δ → TEnv Δ – term variable

◁* : ∀ ℓ → TEnv Δ → TEnv (ℓ :: Δ) – type variable

Membership of a term variable in a type environment is
defined by the inn relation.

data inn : Type Δ ℓ → TEnv Δ → Set where
here : ∀ {T : Type Δ ℓ}{Γ}

→ inn T (T ◁ Γ)
there : ∀ {T : Type Δ ℓ}{T′ : Type Δ ℓ ′}{Γ}

→ inn T Γ → inn T (T′ ◁ Γ)
tskip : ∀ {T : Type Δ ℓ}{Γ}

→ inn T Γ → inn (Twk T) (ℓ ′ ◁* Γ)

In the last alternative, we skip over a type binding. Hence,
the type 𝑇 we find under the binding must be weakened to
account for the extra type variables. Weakening is a special
case of renaming, which is implemented as advocated by
Benton and coworkers [4].

The type of expressions is now given as follows.
2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Towards Tagless Interpretation of Stratified System F Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

data Expr {Δ : LEnv} (Γ : TEnv Δ) : Type Δ ℓ → Set where
#_ : ∀ (n : N) → Expr Γ nat
‘_ : ∀ {T : Type Δ ℓ}

→ inn T Γ → Expr Γ T
o_ : ∀ {T : Type Δ ℓ}{T′ : Type Δ ℓ ′}

→ Expr (T ◁ Γ) T′ → Expr Γ (T ⇒ T′)
· : ∀ {T : Type Δ ℓ}{T′ : Type Δ ℓ ′}

→ Expr Γ (T⇒ T′)→ Expr Γ T→ Expr Γ T′

𝛬 : ∀ (ℓ : Level)→ {T : Type (ℓ :: Δ) ℓ ′}
→ Expr (ℓ ◁* Γ) T → Expr Γ (‘∀ ℓ T)

• : ∀ {T : Type (ℓ :: Δ) ℓ ′}
→ Expr Γ (‘∀ ℓ T)→ (T′ : Type Δ ℓ)
→ Expr Γ (T [T′]T)

Variables, lambda abstractions, and application are encoded
just like for the simply-typed lambda calculus. Type abstrac-
tion takes a level 𝑙 and a body where the new type variable
is bound to 𝑙 . Type application takes an expression with
universal quantification at level 𝑙 and a type 𝑇 ′ of level 𝑙 . It
constructs an expression where type𝑇 ′ has been substituted
in the body 𝑇 of the quantified type. Substitution is defined
as in PLFA [4, 9].

4 Semantics
It remains to define a compositional function from the expres-
sion syntax to the semantic domain that we already prepared
in Section 2. We start with value environments.

Env : (Δ : LEnv)→ TEnv Δ → DEnv Δ → Set𝜔
Env Δ Γ [= ∀ {ℓ}{T : Type Δ ℓ} → inn T Γ → T J T K [

Value environments are represented as functions—we could
have done that in the simply-typed interpreter, too. They are
indexed by a domain environment to be able to calculate the
correct return type.

The definition of the interpretation function follows.

EJ_K : ∀ {T : Type Δ ℓ}{Γ : TEnv Δ}
→ Expr Γ T → ([: DEnv Δ)→ Env Δ Γ [→ T J T K [

EJ # n K [𝛾 = n
EJ ‘ x K [𝛾 = 𝛾 x
EJ o_ e K [𝛾 = _ v→ EJ e K [(extend 𝛾 v)
EJ e1 · e2 K [𝛾 = EJ e1 K [𝛾 (EJ e2 K [𝛾)
EJ 𝛬 ℓ e K [𝛾 = _ D → EJ e K (ext-env D [) (extend-tskip 𝛾)
EJ _•_ {T = T} e T′ K [𝛾 =
subst id (sym (single-subst-preserves T′ T))
(EJ e K [𝛾 (T J T′ K [))

The cases for term variables, lambda abstraction, and appli-
cation are similar to the simply-typed lambda calculus.
The first issue arises in the case for type abstraction. We

interpret a type abstraction at level 𝑙 as a function with
argument type Set 𝑙 . This argument has to be pushed onto the
domain environment [and we have to account at the value

level for the additional type variable in the type environment.
The following function adapts the types.

extend-tskip : ∀ {Δ : LEnv}{Γ : TEnv Δ}{[: DEnv Δ}{D : Set ℓ}
→ Env Δ Γ [→ Env (ℓ :: Δ) (ℓ ◁* Γ) (D :: [)

extend-tskip {[= [} {D = D} 𝛾 (tskip{T = T} x) =
subst id (sym (ren*-preserves-semantics {𝜌 = wk𝑟 }{[}{D :: [}

(wk𝑟∈TRen* [D) T))
(𝛾 x)

The lemma we need in the rewrite clause proves that inter-
preting aweakened type in an extended domain environment
gives the same result as interpreting the type in the orginal
domain environment. The statement of this lemma is more
general as it applies to arbitrary renamings:

ren*-preserves-semantics :
∀ {𝜌 : TRen Δ1 Δ2}{[1 : DEnv Δ1}{[2 : DEnv Δ2}
→ (ren* : TRen* 𝜌 [1 [2) → (T : Type Δ1 ℓ)
→ T J Tren 𝜌 T K [2 ≡ T J T K [1

The argument 𝑟𝑒𝑛∗ roughly states that [1 and [2 are domain
environments related by renaming 𝜌 by precomposition [1 ≡
[2 ◦ 𝜌 . The proof of the lemma is by induction on 𝑇 with an
interesting subgoal in the case for universal quantification:

(T : Type (ℓ :: Δ1) ℓ ′) →
((D : Set ℓ) → T J Tren (ext𝑟 𝜌) T K (D :: [2)) ≡
((D : Set ℓ)→ T J T K (D :: [1))

We can show that the ranges of the function are equal with
the inductive hypothesis. But the usual extensionality prin-
ciple does not let us expose this equation. However, it can be
used to prove a dependent extensionality principle (from the
standard library), which enables us to complete the proof.

∀-extensionality :
∀ {a b}{A : Set a}{F G : (𝛼 : A)→ Set b}
→ (∀ (𝛼 : A) → F 𝛼 ≡ G 𝛼)
→ ((𝛼 : A)→ F 𝛼) ≡ ((𝛼 : A)→ G 𝛼)

The final case for type application opens two different
cans of worms. First, the type of the right hand side does
not match the expected type. Essentially, we have to prove
that the composition of the meaning function for types com-
mutes with substitution. Here 𝑇 [𝑇 ′] substitutes 𝑇 ′ for the
outermost variable of 𝑇 .

single-subst-preserves :
∀ {[: DEnv Δ} (T′ : Type Δ ℓ) (T : Type (ℓ :: Δ) ℓ ′)
→ T J T [T′]T K [≡ T J T K (T J T′ K [:: [)

Second, some steps in the proof involve equalities over en-
tities of Set𝜔 . These cannot be handled with the standard
definition of propositional equality which works parametri-
cally for entities of Set 𝑙 , for any 𝑙 , but not for Set𝜔 . While
it is easy to define these equalities, it is somewhat tedious
to re-establish standard lemmas for transforming equality
proofs like cong, subst, and trans to deal with Set𝜔 .

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Peter Thiemann and Marius Weidner

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

5 Related Work
Arjen Rouvoet’s thesis [14] gives an excellent overview of the
state of the art in intrinsically typed techniques for modeling
language semantics. He pushed the limits of this technology
in a range of papers with various coauthors [11, 15, 16, 18].
Giving semantics in an interpretive style is a defining

feature of denotational semantics [17], but it can be traced
back to Reynolds’s idea of definitional interpreters [12].

The particular encoding of de Bruijn style variable repre-
sentations used in this work dates back to work on nested
datatypes [2, 5, 6], which subsequently lead to GADTs [8].
A tagless interpreter for a simply typed calculus was de-

veloped in Cayenne [3], but for extrinsically typed syntax
(i.e., syntax and separate typing predicatepe).

Intrinsically typed encodings are further studied by Allais
and others [1], who define a range of tagless functions in-
cluding denotational semantics on intrinsically typed terms.

We draw some inspiration from the program implemented
by Benton and coworkers [4]. Based on intrinsically typed
syntax for a simply-typed lambda applied calculus, they de-
fine a big-step semantics and a set-theoretic denotational
semantics. They prove soundness of the former semantics
with respect to the latter as well as adequacy (using a logical
relation). They also develop an expression encoding for Sys-
tem F, but the paper stops short of discussing its semantics.

6 Future Work
We are currently formalizing the small-step semantics of the
language with the goal of proving an adequacy theorem for
reduction with respect to the denotational semantics.

It would also be interesting to extend the stratified calculus
by level quantification as in Agda’s universe polymorphism.

References
[1] Guillaume Allais, James Chapman, Conor McBride, and James McK-

inna. 2017. Type-and-scope safe programs and their proofs. In Pro-
ceedings of the 6th ACM SIGPLAN Conference on Certified Programs
and Proofs, CPP 2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM,
Paris, France, 195–207. https://doi.org/10.1145/3018610.3018613

[2] Thorsten Altenkirch and Bernhard Reus. 1999. Monadic Presentations
of Lambda Terms Using Generalized Inductive Types. In Computer
Science Logic, CSL ’99, 8th Annual Conference of the EACSL (Lecture
Notes in Computer Science, Vol. 1683), Jörg Flum and Mario Rodríguez-
Artalejo (Eds.). Springer, Madrid, Spain, 453–468. https://doi.org/10.
1007/3-540-48168-0_32

[3] Lennart Augustsson and Magnus Carlsson. 1999. An exercise in de-
pendent types: A well-typed interpreter. (May 1999). https://www.
researchgate.net/publication/2610129 unpublished manuscript.

[4] Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride.
2012. Strongly Typed Term Representations in Coq. J. Autom. Reason.
49, 2 (2012), 141–159. https://doi.org/10.1007/s10817-011-9219-0

[5] Richard S. Bird and Lambert G. L. T. Meertens. 1998. Nested Datatypes.
In Mathematics of Program Construction, MPC’98 (Lecture Notes in
Computer Science, Vol. 1422), Johan Jeuring (Ed.). Springer, Marstrand,
Sweden, 52–67. https://doi.org/10.1007/BFb0054285

[6] Richard S. Bird and Ross Paterson. 1999. De Bruijn Notation as a
Nested Datatype. J. Funct. Program. 9, 1 (1999), 77–91. https://doi.org/

10.1017/s0956796899003366
[7] James Chapman, Roman Kireev, Chad Nester, and Philip Wadler. 2019.

System F in Agda, for Fun and Profit. In Mathematics of Program
Construction - 13th International Conference, MPC 2019 (Lecture Notes
in Computer Science, Vol. 11825), Graham Hutton (Ed.). Springer, Porto,
Portugal, 255–297. https://doi.org/10.1007/978-3-030-33636-3_10

[8] James Cheney and Ralf Hinze. 2003. First-Class Phantom Types. Tech-
nical Report TR2003-1901. Cornell University. https://ecommons.
cornell.edu/handle/1813/5614

[9] Wen Kokke, Jeremy G. Siek, and Philip Wadler. 2020. Programming
language foundations in Agda. Sci. Comput. Program. 194 (2020),
102440. https://doi.org/10.1016/j.scico.2020.102440

[10] Daniel Leivant. 1991. Finitely Stratified Polymorphism. Inf. Comput.
93, 1 (1991), 93–113. https://doi.org/10.1016/0890-5401(91)90053-5

[11] Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Kreb-
bers, and Eelco Visser. 2018. Intrinsically-typed definitional inter-
preters for imperative languages. Proc. ACM Program. Lang. 2, POPL
(2018), 16:1–16:34. https://doi.org/10.1145/3158104

[12] John C. Reynolds. 1975. User-defined Types and Procedural Data
Structures as Complementary Approaches to Data Abstraction. In
New Directions in Algorithmic Languages, Stephen A. Schumann (Ed.).
INRIA, St. Pierre-de-Chartreuse, 309–317. Reprinted in [13].

[13] John C. Reynolds. 1994. User-defined Types and Procedural Data
Structures as Complementary Approaches to Data Abstraction. In
Theoretical Aspects of Object-Oriented Programming: Types, Semantics,
and Language Design, Carl A. Gunter and John C. Mitchell (Eds.). MIT
Press, Cambridge, MA, USA, 13–23. Originally published in [12].

[14] Arjen Rouvoet. 2021. Correct by Construction Language Imple-
mentations. Ph. D. Dissertation. Delft University of Technology,
Netherlands. https://doi.org/10.4233/uuid:f0312839-3444-41ee-9313-
b07b21b59c11

[15] Arjen Rouvoet, Robbert Krebbers, and Eelco Visser. 2021. Intrinsically
typed compilation with nameless labels. Proc. ACM Program. Lang. 5,
POPL (2021), 1–28. https://doi.org/10.1145/3434303

[16] Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. 2020. Intrinsically-typed definitional interpreters for linear,
session-typed languages. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020,
Jasmin Blanchette and Catalin Hritcu (Eds.). ACM, New Orleans, LA,
USA, 284–298. https://doi.org/10.1145/3372885.3373818

[17] David A. Schmidt. 1986. Denotational Semantics, A Methodology for
Software Development. Allyn and Bacon, Inc, Massachusetts. https:
//people.cs.ksu.edu/~schmidt/text/ds0122.pdf

[18] Cas van der Rest, Casper Bach Poulsen, Arjen Rouvoet, Eelco Visser,
and Peter D. Mosses. 2022. Intrinsically-typed definitional interpreters
à la carte. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1903–1932.
https://doi.org/10.1145/3563355

4

https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/3-540-48168-0_32
https://www.researchgate.net/publication/2610129
https://www.researchgate.net/publication/2610129
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1017/s0956796899003366
https://doi.org/10.1017/s0956796899003366
https://doi.org/10.1007/978-3-030-33636-3_10
https://ecommons.cornell.edu/handle/1813/5614
https://ecommons.cornell.edu/handle/1813/5614
https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/10.1016/0890-5401(91)90053-5
https://doi.org/10.1145/3158104
https://doi.org/10.4233/uuid:f0312839-3444-41ee-9313-b07b21b59c11
https://doi.org/10.4233/uuid:f0312839-3444-41ee-9313-b07b21b59c11
https://doi.org/10.1145/3434303
https://doi.org/10.1145/3372885.3373818
https://people.cs.ksu.edu/~schmidt/text/ds0122.pdf
https://people.cs.ksu.edu/~schmidt/text/ds0122.pdf
https://doi.org/10.1145/3563355

	Abstract
	1 Introduction
	2 Types
	3 Expressions
	4 Semantics
	5 Related Work
	6 Future Work
	References

