
A type-theoretic account of quantum computation
(extended abstract)

Jacques Garrigue
Nagoya University

Graduate School of Mathematics
Japan

Takafumi Saikawa
Nagoya University

Graduate School of Mathematics
Japan

1 Introduction
Quantum computation is usually presented either in terms
of unitary transformations in a Hilbert space [7], or more
abstractly as string diagrams representing computations in
a symmetric monoidal category [1]. Many works have built
on these bases to allow proving quantum algorithms in such
settings [4, 6, 8]. We investigate whether some type-theoretic
insights could help in describing and proving properties of
quantum computations, in particular those denoted by so-
called quantum circuits.

Our proposal combines several components, which are all
represented using dependent and polymorphic types in Coq.

Lenses can be used to describe the wiring of quantum
circuits in a compositional way. They are related to
the lenses used for view-update in programming lan-
guages and databases [2]. We choose a simpler view
in which lenses are just injections between two finite
sets of wires.

Finite functions over 𝑛-tuples of bits can encode a 𝑛-
qubit quantum state.

Currying of such functions, along a lens, provides a
direct representation of tensor-products.

Polymorphism appears to be sufficient to correctly ap-
ply transformations to curried states. We need it to be
parametric, which is equivalent to morphisms being
natural transformations.

Subtypes allow one to pack properties of morphism
together with their representation.

Using these components, we were able to provide a full
account of pure quantum circuits, proving properties from
the ground up. We were also able to prove a number of
examples, such as the correctness of Shor coding [5] (only
for an error-free channel at this point), or of the reverse
circuit [8].

Our development is available online [3].

2 Lenses and classical focusing
Our most basic data structure is the lens, which describes
which part of the state we want to access.
Record lens (n m : nat) := {ℓ : (In)m | uniq ℓ}.
Building on the MathComp library, this defines a record
whose main component is a tuple of length𝑚, containing
natural numbers smaller than 𝑛 (the ordinal type I𝑛). It is

packed with a proof that this tuple contains no repetition.
All together, this provides a canonical representation for
injective functions from I𝑚 to I𝑛 . Thanks to the coercion
between lens and tuple, the underlying function can be
accessed as if it were a tuple.

The operations required to define updates are complement,
extraction, and merge1.
Parameter lensC n m : lens n m → lens n (n - m).
Parameter extract T n m : lens n m → Tn → Tm.
Parameter merge T n m : lens n m → Tm → Tn−m → Tn.

In the classical case, we can view data as a tuple, so that func-
tions extract and merge allow one to use lenses for update:
Definition focus1 T n m (l : lens n m) (f : Tm → Tm)

: Tn → Tn := fun v =>
merge (f (extract l v)) (extract (lensC l) v).

Lemma focus1_in T n m l f v :
extract l (@focus1 T n m l f v) = f (extract l v).

While these operations cannot be directly applied to quan-
tum states, we will see that they can help us define currying
and uncurrying on those states, which is an essential ingre-
dient of focusing in quantum computation.
It is also often useful to compose lenses, or decompose

a lens into its inclusion and permutation part. Namely, we
have the following functions and laws.
Parameter lens_comp n m p :

lens n m -> lens m p -> lens n p.
Parameter lens_basis n m : lens n m -> lens n m.
Parameter lens_perm n m : lens n m -> lens m m.
Lemma lens_basis_perm n m (l : lens n m) :

lens_comp (lens_basis l) (lens_perm l) = l.
Lemma mem_lens_basis n m (l : lens n m) :

lens_basis l =i l.

where l1 =i l2 means that l1 and l2 are equal as sets.

3 Pure quantum computation
We adopt the traditional view that pure quantum computa-
tion amounts to applying unitary transformations to a quan-
tum state. An individual qubit is represented by a vector in
C2. A quantum state composed of 𝑛 qubits can be described
by the 𝑛-times iterated tensor product C2 ⊗ · · · ⊗ C2, also
noted (C2)

⊗
𝑛 , which is itself isomorphic to C2𝑛 . Unitary

1In the literature, the merge operation usually takes the whole input state,
but here only the unmodified part is required.

https://orcid.org/0000-0001-8056-5519
https://orcid.org/0000-0003-4492-745X


Jacques Garrigue and Takafumi Saikawa

transformations on this space are linear transformations that
preserve the complex norm.
A quantum circuit is a concrete representation of quan-

tum computation where quantum gates, themselve unitary
tranformations, are applied sequentially to specified qubits.

We want to be able to define quantum circuits part by part
and compose them into larger ones. A lens ℓ : lens n m can
be used to compose an𝑚-ary quantum circuit into an 𝑛-ary
one according to the following observations. One is that a
function from 2𝑛 to C can also be seen as function from 2𝑚
to C2𝑛−𝑚 , which itself is a vector space.

C2
𝑛

�
(
C2

𝑛−𝑚
)2𝑚

Another is that any linear transformation on C2𝑚 can be
represented by a matrix, so that it can be applied to vectors
of 𝑇 2𝑚 , for an arbitrary complex vector space 𝑇 , and we can
give an arbitrary linear transformation the type

𝐺 : ∀𝑇 : vector sp.,𝑇 2𝑛 −→ 𝑇 2𝑛

We name the above isomorphism curry and its inverse
uncurry. Along this isomorphism, a gate 𝐺 can be extended
to a larger number of qubits, to become composable in a
circuit.

focusℓ 𝐺 := _𝑇 .(uncurryℓ ◦𝐺𝑇 2𝑛−𝑚 ◦ curryℓ )
The type of 𝐺 alone does not require that it is defined by

a matrix.
∃𝑀, ∀𝑇 : vector sp., ∀𝑣 : 𝑇 2𝑛 , 𝐺𝑇 (𝑣) = 𝑀𝑣.

This property, which we call linear parametricty, is equiva-
lent to naturality with respect to the functor (−)2𝑛 :

𝑇 𝑇 2𝑛 𝑇 2𝑛

𝑇 ′ 𝑇 ′2𝑛 𝑇 ′2𝑛

∀𝜑 𝜑2𝑛 𝜑2𝑛

𝐺𝑇

𝐺𝑇 ′

Our definition of quantum gates is based on naturality.

4 Defining quantum gates
Using MathComp, we can easily encode the concepts de-
scribed in the previous section. dpower n T is the direct-
power of a type T indexed by 𝑛-tuples of some finite type. It
can be used to represent focused quantum states.
Variables (I : finite type) (dI : I) (R : field).

Definition dpower n T := In
fin−−→ T.

Definition morfun m n :=
∀ T : VectR, dpower m T → dpower n T.

Definition morlin m n :=

∀ T : VectR, dpower m T
lin−−→ dpower n T.

Definition dpmap m T1 T2 (f : T1 → T2)
(nv : dpower m T1) : dpower m T2 :=

(v : Im) fin↦−→ f(nv(v)).

Definition naturality m n (f : morlin m n) :=

∀(T1 T2 : VectR), ∀(h : T1
lin−−→ T2), ∀ v,

dpmap h (f T1 v) = f T2 (dpmap h v).
Record mor m n := {𝜑 : morlin m n | naturality 𝜑}.
Notation endo n := (mor n n).

A crucial fact we rely on is that, for any commutative ring,
MathComp defines the left-module of the finite functions
valued into it. This allows us to state that our morphisms
should be linear. We can then define naturality in a direct
way, and require it for all morphisms. We leave unitarity
as an independent property, since it makes sense to have
non-unitary morphisms in some situations.

5 Building circuits
The currying defined in section 3 allows to compose cir-
cuits without referring to a global set of qubits. This is ob-
tained through two operations: (vertical) composition of
morphisms, which just extends function composition, and
focusing through a lens, which allows to connect the wires of
a gate into a larger circuit. We also allow to create a new gate
from a given matrix (expressed as a nested direct-power).

Parameter comp_mor n m p :
mor m p -> mor n m -> mor n p.

Parameter focus n m : lens n m -> endo m -> endo n.
Parameter tsmor n m : dpower n (dpower m R) -> mor m n.
Notation "f \v g" := (comp_mor f g).

The definition of focus uses currying and polymorphism.

Variables (n m : nat) (l : lens n m).
Definition curry (T : VectR) (st : dpower n T)

: dpower m (dpower (n-m) T) :=

(v : Im) fin↦−→
(
(w : In−m) fin↦−→ st (merge l v w)

)
.

Definition uncurry T (st : dpower m (dpower (n-m) T))
: dpower n T :=

(v : In) fin↦−→ st (extract l v) (extract (lensC l) v).
Definition focus_fun (G : endo m) : morfun n n :=
_T. uncurryT ◦ GTIn−m ◦ curryT.

In particular, focus satisfies the following laws.

Definition eq_mor m n (F G : mor m n) :=
∀ T : VectR,∀x, FT (x) = GT (x).

Notation "f =e g" := (eq_mor f g).
Lemma focus_comp n m (f g : endo m) (l : lens n m) :

focus l (f \v g) =e focus l g \v focus l g.
Lemma focusM n m p

(l : lens n m) (l' : lens m p) (f : endo p) :
focus (lens_comp l l') f =e focus l (focus l' f).

Lemma focusC n m p (l : lens n m) (l' : lens n p)
(f : endo m) (g : endo n) : [disjoint l & l'] ->
focus l f \v focus l' g =e focus l' g \v focus l f.

While focus_comp is almost trivial to prove, focusM and focusC
are more involved, and rely on computations on lenses.



A type-theoretic account of quantum computation (extended abstract)

|𝜓 ⟩ • • 𝐻 • •

𝐸

• • 𝐻 • •
|0⟩ •
|0⟩ •
|0⟩ 𝐻 • • • • 𝐻 •
|0⟩ •
|0⟩ •
|0⟩ 𝐻 • • • • 𝐻 •
|0⟩ •
|0⟩ •

Figure 1. Shor’s 9-qubit code

• •
𝐸

• •
•
•

Figure 2. Bit-flip code

• • 𝐻

𝐸

𝐻 • •
𝐻 𝐻 •
𝐻 𝐻 •

Figure 3. Sign-flip code

6 A concrete example
As an example usage of the above definition of compositi-
tions, we show how Shor’s 9-qubit error correction code can
be presented in our framework.
Shor’s code is known by the circuit diagram in Figure 1.

This circuit consists of two smaller components: bit-flip and
sign-flip codes (Figures 2 and 3).
We can see in Shor’s code that three bit-flip codes are

placed in parallel, and sandwiched by one sign-flip code.
This can be expressed straightforwardly as the following
Coq code.
Definition bit_flip_enc : endo 3 :=
focus [lens 0; 2] cnot \v focus [lens 0; 1] cnot.

Definition bit_flip_dec : endo 3 :=
focus [lens 1; 2; 0] toffoli \v bit_flip_enc.

Definition hadamard3 : endo 3 :=
focus [lens 2] hadamard \v focus [lens 1] hadamard
\v focus [lens 0] hadamard.

Definition sign_flip_dec := bit_flip_dec \v hadamard3.
Definition sign_flip_enc := hadamard3 \v bit_flip_enc.
Definition shor_enc : endo 9 :=
focus [lens 0; 1; 2] bit_flip_enc \v
focus [lens 3; 4; 5] bit_flip_enc \v
focus [lens 6; 7; 8] bit_flip_enc \v
focus [lens 0; 3; 6] sign_flip_enc.

Definition shor_dec : endo 9 := ...

We proved that Shor’s code is the identity on an error-free
channel.
Let shor_input i : 9.-tuple I :=
[tuple of [:: i; 0%:O; 0%:O; 0%:O; 0%:O;

0%:O; 0%:O; 0%:O; 0%:O]].
Lemma shor_code_id i :

(shor_dec \v shor_enc) Co (dpbasis C (shor_input i))
= dpbasis C (shor_input i).

7 Related works
We compare with some approaches that attempt at prov-
ing programs from first principles, using a mathematical
model of quantum computation. Most of these approaches
support not only pure quantum computation but also hybrid
quantum-classical computation, and allow one to use a form
of Hoare logic to prove properties.

Qwire/SQIR [4] defines a quantum programming language
in Coq, modeling internally computation with matrices and
Kronecker products. A Hoare logic is also provided that can
simplify proofs. This still means doing some heavy matrix
caculations.

CoqQ [8] builds a theory of Hilbert spaces and n-ary tensor
products on top of MathComp, adding some support for
the so-called labelled Dirac notation. This allows handling
commutation comfortably, but is not fully compositional, in
that the notation is based on a fixed set of labels.

Unruh developed a quantum Hoare logic and formalized it
in Isabelle, using a concept of register [6] which generalizes
our lenses, by allowing focusing between arbitrary types
rather than just sets of qubits.

To summarize, the only work that appears to be fully com-
positional in our meaning is Unruh’s, but its use of Isabelle
means that he had no access to dependent types, and his
encoding cannot rely on them.

8 Conclusion
We have used type-theoretical concepts to encode pure quan-
tum computation into Coq, using the MathComp library.
An interesting remark is that, while we started from the tra-
ditional view of seeing quantum states as tensor products,
our implementation does not rely on tensor products, nei-
ther for states, nor for transformations. Since the Kronecker
product of matrices can be cumbersome to work with, this
is a potential advantage of this approach.

References
[1] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First

Course in Quantum Theory and Diagrammatic Reasoning. Cambridge
University Press, 2017.

[2] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bidirectional tree transfor-
mations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst., 29(3):17, 2007.

[3] Jacques Garrigue and Takafumi Saikawa. Qecc proof scripts.
https://github.com/t6s/qecc/tree/tyde2023.

[4] Jennifer Paykin, Robert Rand, and Steve Zdancewic. Qwire: A core
language for quantum circuits. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL ’17, page
846–858, 2017.

[5] Peter W. Shor. Scheme for reducing decoherence in quantum computer
memory. Phys. Rev. A, 52:R2493–R2496, Oct 1995.



Jacques Garrigue and Takafumi Saikawa

[6] Dominique Unruh. Quantum and classical registers. CoRR,
abs/2105.10914, 2021.

[7] Mingsheng Ying. Foundations of Quantum Programming. Morgan
Kaufmann Publishers Inc., 1st edition, 2016.

[8] Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng
Ying. CoqQ: Foundational verification of quantum programs. Proc.
ACM Program. Lang., 7(POPL), January 2023.


	1 Introduction
	2 Lenses and classical focusing
	3 Pure quantum computation
	4 Defining quantum gates
	5 Building circuits
	6 A concrete example
	7 Related works
	8 Conclusion
	References

